1921
Volume 103, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Scrub typhus and spotted fever group rickettsioses are thought to be common causes of febrile illness in India, whereas they rarely test for murine typhus. This cross-sectional study explored the risk factors associated with scrub typhus, tick-borne spotted fever, and murine typhus seropositivity in three different geographical settings, urban, rural, and hill villages in Tamil Nadu, South India. We enrolled 1,353 participants living in 48 clusters. The study included a questionnaire survey and blood sampling. Blood was tested for (scrub typhus), (murine typhus), and spotted fever group IgG using ELISA. The seroprevalence of scrub typhus, spotted fever, and murine typhus were 20.4%, 10.4%, and 5.4%, respectively. Scrub typhus had the highest prevalence in rural areas (28.1%), and spotted fever was most common in peri-forested areas (14.9%). Murine typhus was more common in rural (8.7%) than urban areas (5.4%) and absent in peri-forested hill areas. Agricultural workers had a higher relative risk for scrub typhus, especially in urban areas. For murine typhus, proximity to a waterbody and owning a dog were found to be major risk factors. The main risk factors for spotted fever were agricultural work and living in proximity to a forest. Urban, rural plains, and hill settings display distinct epidemiological pattern of and rickettsial infections. Although scrub typhus and spotted fever were associated with known risk factors in this study, the findings suggest a different ecology of murine typhus transmission compared with other studies conducted in Asia.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.19-0642
2020-05-26
2020-09-25
Loading full text...

Full text loading...

/deliver/fulltext/14761645/103/1/tpmd190642.html?itemId=/content/journals/10.4269/ajtmh.19-0642&mimeType=html&fmt=ahah

References

  1. Tamura A, Ohashi N, Urakami H, Miyamura S, 1995. Classification of Rickettsia tsutsugamushi in a new genus, Orientia gen. nov., as Orientia tsutsugamushi comb. nov. Int J Syst Bacteriol 45: 589591.
    [Google Scholar]
  2. Paris DH, Shelite TR, Day NP, Walker DH, 2013. Unresolved problems related to scrub typhus: a seriously neglected life-threatening disease. Am J Trop Med Hyg 89: 301307.
    [Google Scholar]
  3. Parola P et al., 2013. Update on tick-borne rickettsioses around the world: a geographic approach. Clin Microbiol Rev 26: 657702.
    [Google Scholar]
  4. Nogueras MM, Pons I, Pla J, Ortuño A, Miret J, Sanfeliu I, Segura F, 2013. The role of dogs in the eco-epidemiology of Rickettsia typhi, etiological agent of murine typhus. Vet Microbiol 163: 97102.
    [Google Scholar]
  5. Azad AF, 1990. Epidemiology of murine typhus. Annu Rev Entomol 35: 553569.
    [Google Scholar]
  6. Kelly DJ, Fuerst PA, Ching WM, Richards AL, 2009. Scrub typhus: the geographic distribution of phenotypic and genotypic variants of Orientia tsutsugamushi. Clin Infect Dis 48 (Suppl 3): S203S230.
    [Google Scholar]
  7. Weitzel T, Dittrich S, Lopez J, Phuklia W, Martinez-Valdebenito C, Velásquez K, Blacksell SD, Paris DH, Abarca K, 2016. Endemic scrub typhus in South America. N Engl J Med 375: 954961.
    [Google Scholar]
  8. Maina AN, Farris CM, Odhiambo A, Jiang J, Laktabai J, Armstrong J, Holland T, Richards AL, O’Meara WP, 2016. Q fever, scrub typhus, and rickettsial diseases in children, Kenya, 2011–2012. Emerg Infect Dis 22: 883886.
    [Google Scholar]
  9. Rathi N, Rathi A, 2010. Rickettsial infections: Indian perspective. Indian Pediatr 47: 157164.
    [Google Scholar]
  10. Gopinath KG, Chrispal A, Boorugu H, Chandy S, Prakash JJ, Abraham AM, Abraham OC, Thomas K, 2014. Clinico-epidemiological profile of seven adults with spotted fever from a tertiary care hospital in south India. Trop Doct 44: 8991.
    [Google Scholar]
  11. George T, Rajan SJ, Peter JV, Hansdak SG, Prakash JAJ, Iyyadurai R, Mathuram A, Antonisamy B, Ramanathan K, Sudarsanam TD, 2018. Risk factors for acquiring scrub typhus among the adults. J Glob Infect Dis 10: 147151.
    [Google Scholar]
  12. Varghese GM, Raj D, Francis MR, Sarkar R, Trowbridge P, Muliyil J, 2016. Epidemiology & risk factors of scrub typhus in south India. Indian J Med Res 144: 7681.
    [Google Scholar]
  13. Trowbridge P, Divya P., Premkumar PS, Varghese GM, 2017. Prevalence and risk factors for scrub typhus in south India. Trop Med Int Health 22: 576582.
    [Google Scholar]
  14. Devamani CS, Prakash JAJ, Alexander N, Suzuki M, Schmidt WP, 2019. Hospitalisations and outpatient visits for undifferentiated fever attributable to scrub typhus in rural south India: retrospective cohort and nested case-control study. PLoS Negl Trop Dis 13: e0007160.
    [Google Scholar]
  15. Vallee J, Thaojaikong T, Moore CE, Phetsouvanh R, Richards AL, Souris M, Fournet F, Salem G, Gonzalez JP, Newton PN, 2010. Contrasting spatial distribution and risk factors for past infection with scrub typhus and murine typhus in Vientiane city, Lao PDR. PLoS Negl Trop Dis 4: e909.
    [Google Scholar]
  16. Leithwaite RSS, 1936. The typhus group of diseases in Malaya VIII. The relation of the tsutsugamushi disease (including rural typhus) to urban typhus. B J Exp Path 17: 461466.
    [Google Scholar]
  17. Traub R, Wisseman CL, 1978. The ecology of murine typhus-a critical review. Trop Dis Bull 75: 237317.
    [Google Scholar]
  18. Dennis DT, Hadi TR, Brown RJ, Sukaeri S, Leksana B, Cholid R, 1981. A survey of scrub and murine typhus in the Ancol section of Jakarta, Indonesia. Southeast Asian J Trop Med Public Health 12: 574580.
    [Google Scholar]
  19. Richards AL et al., 1997. Seroepidemiologic evidence for murine and scrub typhus in Malang, Indonesia. Am J Trop Med Hy 57: 9195.
    [Google Scholar]
  20. Tay ST, Kamalanathan M, Rohani MY, 2003. Antibody prevalence of Orientia tsutsugamushi, Rickettsia typhi and TT118 spotted fever group rickettsiae among Malaysian blood donors and febrile patients in the urban areas. Southeast Asian J Trop Med Public Health 34: 165170.
    [Google Scholar]
  21. Zhang LJ, Li XM, Zhang DR, Zhang JS, Di Y, Luan MC, Fu XP, 2007. Molecular epidemic survey on co-prevalence of scrub typhus and marine typhus in Yuxi city, Yunnan province of China. Chin Med J 120: 13141318.
    [Google Scholar]
  22. Hamaguchi S et al., 2015. Clinical and epidemiological characteristics of scrub typhus and murine typhus among hospitalized patients with acute undifferentiated fever in northern Vietnam. Am JTrop Med Hyg 92: 972978.
    [Google Scholar]
  23. Park SW, Ha NY, Ryu B, Bang JH, Song H, Kim Y, Kim G, Oh MD, Cho NH, Lee JK, 2015. Urbanization of scrub typhus disease in South Korea. PLoS Negl Trop Dis 9: e0003814.
    [Google Scholar]
  24. Tshokey T, Stenos J, Durrheim DN, Eastwood K, Nguyen C, Graves SR, 2017. Seroprevalence of rickettsial infections and Q fever in Bhutan. PLoS Negl Trop Dis 11: e0006107.
    [Google Scholar]
  25. Rose W, Kang G, Verghese VP, Candassamy S, Samuel P, Prakash JJA, Muliyil J, 2019. Risk factors for acquisition of scrub typhus in children admitted to a tertiary centre and its surrounding districts in south India: a case control study. BMC Infect Dis 19: 665.
    [Google Scholar]
  26. Noden BH, Davidson S, Smith JL, Williams F, 2017. First detection of Rickettsia typhi and Rickettsia felis in fleas collected from client-owned companion animals in the southern great plains. J Med Entomol 54: 10931097.
    [Google Scholar]
  27. Lledo L, Gegundez MI, Serrano JL, Saz JV, Beltran M, 2003. A sero-epidemiological study of Rickettsia typhi infection in dogs from Soria province, central Spain. Ann Trop Med Parasitol 97: 861864.
    [Google Scholar]
  28. Bharti AR et al., 2003. Leptospirosis: a zoonotic disease of global importance. Lancet Infect Dis 3: 757771.
    [Google Scholar]
  29. Dincy PC, Susanne PA, Leni G, T. S, Meera T, Aj PJ, 2018; Clinicopathological study on rickettsial spotted fever from south India. Trop Doct 48: 325329.
    [Google Scholar]
  30. Kalal BS, Puranik P, Nagaraj S, Rego S, Shet A, 2016. Scrub typhus and spotted fever among hospitalised children in south India: clinical profile and serological epidemiology. Indian J Med Microbiol 34: 293298.
    [Google Scholar]
  31. Stephen S, Ambroise S, Gunasekaran D, Hanifah M, Sangeetha B, Pradeep J, Sarangapani K, 2018. Serological evidence of spotted fever group rickettsiosis in and around Puducherry, south India-a three years study. J Vector Borne Dis 55: 144150.
    [Google Scholar]
  32. Prakash JA, Sohan Lal T, Rosemol V, Verghese VP, Pulimood SA, Reller M, Dumler JS, 2012. Molecular detection and analysis of spotted fever group Rickettsia in patients with fever and rash at a tertiary care centre in Tamil Nadu, India. Pathog Glob Health 106: 4045.
    [Google Scholar]
  33. Podsiadly E, Chmielewski T, Karbowiak G, Kedra E, Tylewska-Wierzbanowska S, 2011. The occurrence of spotted fever rickettsioses and other tick-borne infections in forest workers in Poland. Vector Borne Zoonotic Dis 11: 985989.
    [Google Scholar]
  34. Aung AK, Spelman DW, Murray RJ, Graves S, 2014. Rickettsial infections in southeast Asia: implications for local populace and febrile returned travelers. Am J Trop Med Hyg 91: 451460.
    [Google Scholar]
  35. Tay ST, Ho TM, Rohani MY, Devi S, 2000. Antibodies to Orientia tsutsugamushi, Rickettsia typhi and spotted fever group rickettsiae among febrile patients in rural areas of Malaysia. Trans R Soc Trop Med Hyg 94: 280284.
    [Google Scholar]
  36. Tay ST, Rohani MY, Ho TM, Devi S, 2002. Isolation and PCR detection of rickettsiae from clinical and rodent samples in Malaysia. Southeast Asian J Trop Med Public Health 33: 772779.
    [Google Scholar]
  37. Suttinont C et al., 2006. Causes of acute, undifferentiated, febrile illness in rural Thailand: results of a prospective observational study. Ann Trop Med Parasitol 100: 363370.
    [Google Scholar]
  38. Richards AL, Ratiwayanto S, Rahardjo E, Kelly DJ, Dasch GA, Fryauff DJ, Bangs MJ, 2003. Serologic evidence of infection with ehrlichiae and spotted fever group rickettsiae among residents of Gag Island, Indonesia. Am J Trop Med Hyg 68: 480484.
    [Google Scholar]
  39. Brown GW, Robinson DM, Huxsoll DL, Ng TS, Lim KJ, 1976. Scrub typhus: a common cause of illness in indigenous populations. Trans R Soc Trop Med Hyg 70: 444448.
    [Google Scholar]
  40. Ogrzewalska M, Saraiva DG, Moraes-Filho J, Martins TF, Costa FB, Pinter A, Labruna MB, 2012. Epidemiology of Brazilian spotted fever in the atlantic forest, state of Sao Paulo, Brazil. Parasitology 139: 12831300.
    [Google Scholar]
  41. de Oliveira SV et al., 2016. An update on the epidemiological situation of spotted fever in Brazil. J Venom Anim Toxins Incl Trop Dis 22: 22.
    [Google Scholar]
  42. Varghese GM, Rajagopal VM, Trowbridge P, Purushothaman D, Martin SJ, 2018. Kinetics of IgM and IgG antibodies after scrub typhus infection and the clinical implications. Int J Infect Dis 71: 5355.
    [Google Scholar]
  43. Sando E, Ariyoshi K, Fujita H, 2018. Serological cross-reactivity among Orientia tsutsugamushi serotypes but not with Rickettsia japonica in Japan. Trop Med Infect Dis 3: E74.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.19-0642
Loading
/content/journals/10.4269/ajtmh.19-0642
Loading

Data & Media loading...

  • Received : 29 Aug 2019
  • Accepted : 11 Feb 2020
  • Published online : 26 May 2020
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error