1921
Volume 102, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

The infrastructure challenges and costs of next-generation sequencing have been largely overcome, for many sequencing applications, by Oxford Nanopore Technologies’ portable MinION sequencer. However, the question remains open whether MinION-based bacterial whole genome sequencing is by itself sufficient for the accurate assessment of phylogenetic and epidemiological relationships between isolates and whether such tasks can be undertaken in resource-limited settings. To investigate this question, we sequenced the genome of an isolate of , an important and neglected cause of fever across much of the tropics and subtropics, for which only three genomic sequences previously existed. We prepared and sequenced libraries on a MinION in Vientiane, Lao PDR, using v9.5 chemistry, and in parallel, we sequenced the same isolate on the Illumina platform in a genomics laboratory in the United Kingdom. The MinION sequence reads yielded a single contiguous assembly, in which the addition of Illumina data revealed 226 base-substitution and 5,856 indel errors. The combined assembly represents the first complete genome sequence of a human isolate collected in the last 50 years and differed from the genomes of existing strains collected over a 90-year time period at very few sites, with no rearrangements. Filtering based on the known error profile of MinION data improved the accuracy of the nanopore-only assembly. However, the frequency of false-positive errors remained greater than true sequence divergence from recorded sequences. Although nanopore-only sequencing cannot yet recover phylogenetic signals in , such an approach may be applicable for more diverse organisms.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.19-0383
2019-12-09
2020-09-26
Loading full text...

Full text loading...

/deliver/fulltext/14761645/102/2/tpmd190383.html?itemId=/content/journals/10.4269/ajtmh.19-0383&mimeType=html&fmt=ahah

References

  1. National Human Genome Research Institute (NHGRI), 2019. The Cost of Sequencing a Human Genome. Available at: https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost. Accessed November 14, 2017.
    [Google Scholar]
  2. Jain M, Olsen HE, Paten B, Akeson M, 2016. The Oxford nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol 17: 239.
    [Google Scholar]
  3. Quick J et al., 2016. Real-time, portable genome sequencing for Ebola surveillance. Nature 530: 228232.
    [Google Scholar]
  4. Loman NJ, Quick J, Simpson JT, 2015. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods 12: 733735.
    [Google Scholar]
  5. Risse J, Thomson M, Patrick S, Blakely G, Koutsovoulos G, Blaxter M, Watson M, 2015. A single chromosome assembly of Bacteroides fragilis strain BE1 from Illumina and MinION nanopore sequencing data. GigaScience 4: 60.
    [Google Scholar]
  6. Istace B et al., 2017. De novo assembly and population genomic survey of natural yeast isolates with the Oxford nanopore MinION sequencer. GigaScience 6: 113.
    [Google Scholar]
  7. Jansen HJ et al., 2017. Rapid de novo assembly of the European eel genome from nanopore sequencing reads. Sci Rep 7: 7213.
    [Google Scholar]
  8. Jain M et al., 2018. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol 36: 338345.
    [Google Scholar]
  9. Goodwin S, Gurtowski J, Ethe-Sayers S, Deshpande P, Schatz MC, McCombie WR, 2015. Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome. Genome Res 25: 17501756.
    [Google Scholar]
  10. United Nations Development Programme, 2015. Human Development Index (HDI). Available at: http://hdr.undp.org/en/content/human-development-index-hdi. Accessed November 14, 2017.
    [Google Scholar]
  11. Speedtest, 2018. Speedtest Global Index. Available at: http://www.speedtest.net/global-index. Accessed August 13, 2017.
    [Google Scholar]
  12. Dumler JS, Walker DH, 2010. Rickettsia typhi (Murine Typhus). Mandell GL, Bennett JE, Dolin R, eds. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 7th edition. Philadelphia, PA: Churchill Livingstone, 25252528.
    [Google Scholar]
  13. Tsioutis C, Zafeiri M, Avramopoulos A, Prousali E, Miligkos M, Karageorgos SA, 2017. Clinical and laboratory characteristics, epidemiology, and outcomes of murine typhus: a systematic review. Acta Trop 166: 1624.
    [Google Scholar]
  14. Azad AF, 1990. Epidemiology of murine typhus. Annu Rev Entomol 35: 553569.
    [Google Scholar]
  15. Civen R, Ngo V, 2008. Murine typhus: an unrecognized suburban vectorborne disease. Clin Infect Dis 46: 913918.
    [Google Scholar]
  16. Dittrich S et al., 2015. Orientia, rickettsia, and leptospira pathogens as causes of CNS infections in Laos: a prospective study. Lancet Glob Health 3: e104e112.
    [Google Scholar]
  17. Newton PN et al., 2018. A prospective, open-label, randomized trial of doxycycline versus azithromycin for the treatment of uncomplicated murine typhus. Clin Infect Dis 68: 738747.
    [Google Scholar]
  18. McLeod MP et al., 2004. Complete genome sequence of Rickettsia typhi and comparison with sequences of other rickettsiae. J Bacteriol 186: 58425855.
    [Google Scholar]
  19. Maxcy KF, 1929. Endemic typhus fever of the southeastern United States: reaction of the Guinea pig. Public Health Rep 44: 589600.
    [Google Scholar]
  20. Institute USDoEJG, 2014. Rickettsia typhi TH1527. Available at: https://gold.jgi.doe.gov/project?id=11636. Accessed November 14, 2017.
    [Google Scholar]
  21. Sankasuwan V, Pongpradit P, Bodhidatta P, Thonglongya K, Winter PE, 1969. Murine typhus in Thailand. Trans R Soc Trop Med Hyg 63: 639643.
    [Google Scholar]
  22. Institute USDoEJG, 2014. Rickettsia typhi B9991CWPP. Available at: https://gold.jgi.doe.gov/project?id=11634. Accessed November 14, 2017.
    [Google Scholar]
  23. Jiang J, Chan TC, Temenak JJ, Dasch GA, Ching WM, Richards AL, 2004. Development of a quantitative real-time polymerase chain reaction assay specific for Orientia tsutsugamushi. Am J Trop Med Hyg 70: 351356.
    [Google Scholar]
  24. Kim D, Song L, Breitwieser FP, Salzberg SL, 2016. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res 26: 17211729.
    [Google Scholar]
  25. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM, 2017. Canu: scalable and accurate long-read assembly via adaptivek-mer weighting and repeat separation. Genome Res 27: 722736.
    [Google Scholar]
  26. Li H, 2013. Aligning Sequence Reads, Clone Sequences and Assembly Contigs with BWA-MEM. Available at: https://arxiv.org/abs/1303.3997. Accessed January 30, 2018.
    [Google Scholar]
  27. Walker BJ et al., 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9: e112963.
    [Google Scholar]
  28. Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM, 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31: 32103212.
    [Google Scholar]
  29. Wick RR, Judd LM, Gorrie CL, Holt KE, 2017. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13: e1005595.
    [Google Scholar]
  30. Seemann T, 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics; 30: 20682069.
    [Google Scholar]
  31. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, Fookes M, Falush D, Keane JA, Parkhill J, 2015. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31: 36913693.
    [Google Scholar]
  32. Breitwieser FP, Salzberg SL, 2019. Pavian: interactive analysis of metagenomics data for microbiomics and pathogen identification. Bioinformatics btz715.
    [Google Scholar]
  33. Kriventseva EV, Tegenfeldt F, Petty TJ, Waterhouse RM, Simao FA, Pozdnyakov IA, Ioannidis P, Zdobnov EM, 2015. OrthoDB v8: update of the hierarchical catalog of orthologs and the underlying free software. Nucleic Acids Res 43: D250D256.
    [Google Scholar]
  34. Darling AE, Mau B, Perna NT, 2010. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5: e11147.
    [Google Scholar]
  35. Phongmany S et al., 2006. Rickettsial infections and fever, Vientiane, Laos. Emerg Infect Dis 12: 256262.
    [Google Scholar]
  36. McGinty RJ, Rubinstein RG, Neil AJ, Dominska M, Kiktev D, Petes TD, Mirkin SM, 2017. Nanopore sequencing of complex genomic rearrangements in yeast reveals mechanisms of repeat-mediated double-strand break repair. Genome Res 27: 20722082.
    [Google Scholar]
  37. Parker J, Helmstetter AJ, Devey D, Wilkinson T, Papadopulos AST, 2017. Field-based species identification of closely-related plants using real-time nanopore sequencing. Sci Rep 7: 8345.
    [Google Scholar]
  38. Batovska J, Lynch SE, Rodoni BC, Sawbridge TI, Cogan NO, 2017. Metagenomic arbovirus detection using MinION nanopore sequencing. J Virol Methods 249: 7984.
    [Google Scholar]
  39. Schmidt K et al., 2017. Identification of bacterial pathogens and antimicrobial resistance directly from clinical urines by nanopore-based metagenomic sequencing. J Antimicrob Chemother 72: 104114.
    [Google Scholar]
  40. Hagen R, Verhoeve VI, Gillespie JJ, Driscoll TP, 2018. Conjugative transposons and Their cargo genes vary across natural populations of Rickettsia buchneri infecting the tick ixodes scapularis. Genome Biol Evol 10: 32183229.
    [Google Scholar]
  41. Diop A, Raoult D, Fournier PE, 2019. Paradoxical evolution of rickettsial genomes. Ticks Tick Borne Dis 10: 462469.
    [Google Scholar]
  42. Sears KT, Ceraul SM, Gillespie JJ, Allen ED Jr., Popov VL, Ammerman NC, Rahman MS, Azad AF, 2012. Surface proteome analysis and characterization of surface cell antigen (Sca) or autotransporter family of Rickettsia typhi. PLoS Pathog 8: e1002856.
    [Google Scholar]
  43. Oxford Nanopore Technologies, 2018. Available at: https://nanoporetech.com/products%20-%20modal=comparison. Accessed March 23, 2018.
  44. Wick RR, Judd LM, Gorrie CL, Holt KE, 2017. Completing bacterial genome assemblies with multiplex MinION sequencing. Microb Genom 3: e000132.
    [Google Scholar]
  45. Oxford Nanopore Technologies, 2018. Available at: https://nanoporetech.com/products/flongle. Accessed May 09, 2018.
  46. Bates M, Polepole P, Kapata N, Loose M, O’Grady J, 2016. Application of highly portable MinION nanopore sequencing technology for the monitoring of nosocomial tuberculosis infection. Int J Mycobacteriol 5 (Suppl 1): S24.
    [Google Scholar]
  47. Faria NR, Sabino EC, Nunes MR, Alcantara LC, Loman NJ, Pybus OG, 2016. Mobile real-time surveillance of Zika virus in Brazil. Genome Med 8: 97.
    [Google Scholar]
  48. Menegon M, Cantaloni C, Rodriguez-Prieto A, Centomo C, Abdelfattah A, Rossato M, Bernardi M, Xumerle L, Loader S, Delledonne M, 2017. On site DNA barcoding by nanopore sequencing. PLoS One 12: e0184741.
    [Google Scholar]
  49. Johnson SS, Zaikova E, Goerlitz DS, Bai Y, Tighe SW, 2017. Real-Time DNA sequencing in the antarctic dry valleys using the Oxford nanopore sequencer. J Biomol Tech 28: 27.
    [Google Scholar]
  50. Goordial J, Altshuler I, Hindson K, Chan-Yam K, Marcolefas E, Whyte LG, 2017. In situ field sequencing and life detection in remote (79 degrees 26'N) Canadian high arctic permafrost ice wedge microbial communities. Front Microbiol 8: 2594.
    [Google Scholar]
  51. Castro-Wallace SL et al., 2017. Nanopore DNA sequencing and genome assembly on the international space station. Sci Rep 7: 18022.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.19-0383
Loading
/content/journals/10.4269/ajtmh.19-0383
Loading

Data & Media loading...

Supplemental tables and figures

  • Received : 20 May 2019
  • Accepted : 25 Oct 2019
  • Published online : 09 Dec 2019
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error