1921
Volume 102, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

The epidemiology of febrile illness etiologies is under-explored in resource-poor settings. Establishing a local repertory of microorganisms circulating in blood of febrile and afebrile people is important for physicians. Blood was collected from 428 febrile and 88 afebrile children in Makokou (Gabon) and analyzed using polymerase chain reaction. spp. were the pathogens, which were most detected in febrile children (69.6%; 298/428) and in afebrile children (31.8%; 28/88) ( < 0.0001). was the most prevalent species in both febrile and afebrile children (66.8% and 27.3%, respectively). No differences were observed between febrile and afebrile children for and (8.2% versus 10.2% and 3.3% versus 3.4%, respectively). Triple infection with , , and was also detected in 1% of febrile children (4/428). Filariasis due to was detected in 10 febrile patients (2.3%), whereas was detected in both febrile and afebrile children (1.4% and 2.3%, respectively). Bacterial DNA was detected in only 4.4% (19/428) of febrile children, including 13 (68.4%) who were coinfected with at least one species. These were (1.6%, 7/428), and (1.2%, 5/428), and (0.9%, 4/428). , spp., spp., , spp., spp., , and spp. were not detected. This study also highlights the over-prescription and the overuse of antibiotics and antimalarials. Overall, malaria remains a major health problem in Makokou. Malaria control measures must be reconsidered in this region.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.19-0368
2019-11-25
2021-01-21
Loading full text...

Full text loading...

/deliver/fulltext/14761645/102/1/tpmd190368.html?itemId=/content/journals/10.4269/ajtmh.19-0368&mimeType=html&fmt=ahah

References

  1. Prasad N, Sharples KJ, Murdoch DR, Crump JA, 2015. Community prevalence of fever and relationship with malaria among infants and children in low-resource areas. Am J Trop Med Hyg 93: 178180.
    [Google Scholar]
  2. Feikin DR, Olack B, Bigogo GM, Audi A, Cosmas L, Aura B, Burke H, Njenga MK, Williamson J, Breiman RF, 2011. The burden of common infectious disease syndromes at the clinic and household level from population-based surveillance in rural and urban Kenya. PLoS One 6: e16085.
    [Google Scholar]
  3. Lunze K et al., 2017. Clinical management of children with fever: a cross-sectional study of quality of care in rural Zambia. Bull World Health Organ 95: 333342.
    [Google Scholar]
  4. World Health Organization, 2018. Maternal, Newborn, Child and Adolescent Health. Geneva, Switzerland: WHO.
    [Google Scholar]
  5. Hildenwall H, Muro F, Jansson J, Mtove G, Reyburn H, Amos B, 2017. Point-of-care assessment of C-reactive protein and white blood cell count to identify bacterial aetiologies in malaria-negative paediatric fevers in Tanzania. Trop Med Int Health 22: 286293.
    [Google Scholar]
  6. Nankabirwa J, Zurovac D, Njogu JN, Rwakimari JB, Counihan H, Snow RW, Tibenderana JK, 2009. Malaria misdiagnosis in Uganda–implications for policy change. Malar J 8: 66.
    [Google Scholar]
  7. Reyburn H et al., 2004. Overdiagnosis of malaria in patients with severe febrile illness in Tanzania: a prospective study. BMJ 329: 1212.
    [Google Scholar]
  8. World Health Organization, 2010. World Malaria Report. Geneva, Switzerland: WHO.
    [Google Scholar]
  9. World Health Organization, 2011. Universal Access to Malaria Diagnostic Testing: an Operational Manual. Geneva, Switzerland: WHO.
    [Google Scholar]
  10. Church J, Maitland K, 2014. Invasive bacterial co-infection in African children with Plasmodium falciparum malaria: a systematic review. BMC Med 12: 31.
    [Google Scholar]
  11. Kibuuka A, Byakika-Kibwika P, Achan J, Yeka A, Nalyazi JN, Mpimbaza A, Rosenthal PJ, Kamya MR, 2015. Bacteremia among febrile Ugandan children treated with antimalarials despite a negative malaria test. Am J Trop Med Hyg 93: 276280.
    [Google Scholar]
  12. Crump JA et al., 2013. Etiology of severe non-malaria febrile illness in northern Tanzania: a prospective cohort study. PLoS Negl Trop Dis 7: e2324.
    [Google Scholar]
  13. Mediannikov O, Socolovschi C, Bassene H, Diatta G, Ratmanov P, Fenollar F, Sokhna C, Raoult D, 2014. Borrelia crocidurae infection in acutely febrile patients, Senegal. Emerg Infect Dis 20: 13351338.
    [Google Scholar]
  14. Bassene H, Mediannikov O, Socolovschi C, Ratmanov P, Keita AK, Sokhna C, Raoult D, Fenollar F, 2016. Tropheryma whipplei as a cause of epidemic fever, Senegal, 2010–2012. Emerg Infect Dis 22: 12291334.
    [Google Scholar]
  15. Fenollar F, Mediannikov O, Socolovschi C, Bassene H, Diatta G, Richet H, Tall A, Sokhna C, Trape JF, Raoult D, 2010. Tropheryma whipplei bacteremia during fever in rural west Africa. Clin Infect Dis 51: 515521.
    [Google Scholar]
  16. Mediannikov O, Diatta G, Fenollar F, Sokhna C, Trape JF, Raoult D, 2010. Tick-borne rickettsioses, neglected emerging diseases in rural Senegal. PLoS Negl Trop Dis 4: e821.
    [Google Scholar]
  17. Diatta G, Mediannikov O, Sokhna C, Bassene H, Socolovschi C, Ratmanov P, Fenollar F, Raoult D, 2014. Prevalence of Bartonella quintana in patients with fever and head lice from rural areas of Sine-Saloum, Senegal. Am J Trop Med Hyg 91: 291293.
    [Google Scholar]
  18. Bouyou-Akotet MK, Mawili-Mboumba DP, Kendjo E, Eyang Ekouma A, Abdou Raouf O, Engohang Allogho E, Kombila M, 2012. Complicated malaria and other severe febrile illness in a pediatric ward in Libreville, Gabon. BMC Infect Dis 12: 216.
    [Google Scholar]
  19. Mourembou G et al., 2016. Co-circulation of Plasmodium and bacterial DNAs in blood of febrile and afebrile children from urban and rural areas in Gabon. Am J Trop Med Hyg 95: 123132.
    [Google Scholar]
  20. Mourembou G et al., 2015. Molecular detection of fastidious and common bacteria as well as Plasmodium spp. in febrile and afebrile children in Franceville, Gabon. Am J Trop Med Hyg 92: 926932.
    [Google Scholar]
  21. Nkoghe D, Akue JP, Gonzalez JP, Leroy EM, 2011. Prevalence of Plasmodium falciparum infection in asymptomatic rural Gabonese populations. Malar J 10: 33.
    [Google Scholar]
  22. Lekana-Douki JB, Pontarollo J, Zatra R, Toure-Ndouo FS, 2011. Malaria in Gabon: results of a clinical and laboratory study at the Chinese-Gabonese friendship hospital of Franceville. Sante 21: 193198.
    [Google Scholar]
  23. Mediannikov O, Fenollar F, Socolovschi C, Diatta G, Bassene H, Molez JF, Sokhna C, Trape JF, Raoult D, 2010. Coxiella burnetii in humans and ticks in rural Senegal. PLoS Negl Trop Dis 4: e654.
    [Google Scholar]
  24. Assele V, Ndoh GE, Nkoghe D, Fandeur T, 2015. No evidence of decline in malaria burden from 2006 to 2013 in a rural province of Gabon: implications for public health policy. BMC Public Health 15: 81.
    [Google Scholar]
  25. Gaye A, Bousema T, Libasse G, Ndiath MO, Konaté L, Jawara M, Faye O, Sokhna C, 2015. Infectiousness of the human population to Anopheles arabiensis by direct skin feeding in an area hypoendemic for malaria in Senegal. Am J Trop Med Hyg 92: 648652.
    [Google Scholar]
  26. Lin Ouédraogo A, Gonçalves BP, Gnémé A, Wenger EA, Guelbeogo MW, Ouédraogo A, Gerardin J, Bever CA, Lyons H, Pitroipa X, 2015. Dynamics of the human infectious reservoir for malaria determined by mosquito feeding assays and ultrasensitive malaria diagnosis in Burkina Faso. J Infect Dis 213: 9099.
    [Google Scholar]
  27. Bichara C, Flahaut P, Costa D, Bienvenu AL, Picot S, Gargala G, 2017. Cryptic Plasmodium ovale concurrent with mixed Plasmodium falciparum and Plasmodium malariae infection in two children from Central African Republic. Malar J 16: 339.
    [Google Scholar]
  28. Dinko B, Oguike MC, Larbi JA, Bousema T, Sutherland CJ, 2013. Persistent detection of Plasmodium falciparum, P. malariae, P. ovale curtisi and P. ovale wallikeri after ACT treatment of asymptomatic Ghanaian school-children. Int J Parasitol Drugs Drug Resist 3: 4550.
    [Google Scholar]
  29. Fançony C, Gamboa D, Sebastião Y, Hallett R, Sutherland C, Sousa-Figueiredo JC, Nery SV, 2012. Various pfcrt and pfmdr1 genotypes of Plasmodium falciparum cocirculate with P. malariae, P. ovale spp., and P. vivax in northern Angola. Antimicrob Agents Chemother 56: 52715277.
    [Google Scholar]
  30. Bruce MC, Macheso A, Kelly-Hope LA, Nkhoma S, McConnachie A, Molyneux ME, 2008. Effect of transmission setting and mixed species infections on clinical measures of malaria in Malawi. PLoS One 3: e2775.
    [Google Scholar]
  31. Bottius E, Guanzirolli A, Trape JF, Rogier C, Konate L, Druilhe P, 1996. Malaria: even more chronic in nature than previously thought; evidence for subpatent parasitaemia detectable by the polymerase chain reaction. Trans R Soc Trop Med Hyg 90: 1519.
    [Google Scholar]
  32. Sattabongkot J, Suansomjit C, Nguitragool W, Sirichaisinthop J, Warit S, Tiensuwan M, Buates S, 2018. Prevalence of asymptomatic Plasmodium infections with sub-microscopic parasite densities in the northwestern border of Thailand: a potential threat to malaria elimination. Malar J 17: 329.
    [Google Scholar]
  33. Koko J, Batsiélili S, Dufillot D, Kani F, Gahouma D, Moussavou A, 2000. Les méningites bactériennes de l’enfant à Libreville, Gabon. Aspects épidémiologiques, thérapeutiques et évolutifs. Med Mal Infect 30: 5056.
    [Google Scholar]
  34. Gabon , 2010. Lancement de la campagne de vaccination contre les HIB. Gaboneco. Available at: http://www.gaboneco.com/gabon-lancement-de-la-campagne-de-vaccination-contre-les-hib.html. Accessed January 14, 2019.
    [Google Scholar]
  35. Ajayi IO et al., 2008. Effectiveness of artemisinin-based combination therapy used in the context of home management of malaria: a report from three study sites in sub-Saharan Africa. Malar J 7: 190.
    [Google Scholar]
  36. Ajayi IO et al., 2008. Feasibility and acceptability of artemisinin-based combination therapy for the home management of malaria in four African sites. Malar J 7: 6.
    [Google Scholar]
  37. Nwaneri DU, Sadoh AE, Ibadin MO, 2017. Impact of home-based management on malaria outcome in under-fives presenting in a tertiary health institution in Nigeria. Malar J 16: 187.
    [Google Scholar]
  38. Wongsrichanalai C, Meshnick SR, 2008. Declining artesunate-mefloquine efficacy against falciparum malaria on the Cambodia-Thailand border. Emerg Infect Dis 14: 716719.
    [Google Scholar]
  39. Baiden F, Webster J, Owusu-Agyei S, Chandramohan D, 2011. Would rational use of antibiotics be compromised in the era of test-based management of malaria? Trop Med Int Health 16: 142144.
    [Google Scholar]
  40. World Health Organization, 2015. World Malaria Report. Available at: https://www.who.int/malaria/publications/world-malaria-report-2018/en/. Accessed July 2, 2018.
    [Google Scholar]
  41. Carneiro I, Roca-Feltrer A, Griffin JT, Smith L, Tanner M, Schellenberg JA, Greenwood B, Schellenberg D, 2010. Age-patterns of malaria vary with severity, transmission intensity and seasonality in sub-Saharan Africa: a systematic review and pooled analysis. PLoS One 5: e8988.
    [Google Scholar]
  42. Hopkins H, Bruxvoort KJ, Cairns ME, Chandler CI, Leurent B, Ansah EK, Baiden F, Baltzell KA, Björkman A, Burchett HE, 2017. Impact of introduction of rapid diagnostic tests for malaria on antibiotic prescribing: analysis of observational and randomised studies in public and private healthcare settings. BMJ 56: j1054.
    [Google Scholar]
  43. Bruxvoort KJ et al., 2017. The impact of introducing malaria rapid diagnostic tests on fever case management: a synthesis of ten studies from the ACT consortium. Am J Trop Med Hyg 97: 11701179.
    [Google Scholar]
  44. van der Poll T, Opal SM, 2009. Pathogenesis, treatment, and prevention of pneumococcal pneumonia. Lancet 374: 15431556.
    [Google Scholar]
  45. World Health Organization, 2019. Pneumonia. Available at: https://www.who.int/news-room/fact-sheets/detail/pneumonia. Accessed January 21, 2019.
    [Google Scholar]
  46. Mediannikov O, Socolovschi C, Million M, Sokhna C, Bassene H, Diatta G, Fenollar F, Raoult D, 2014. Molecular identification of pathogenic bacteria in eschars from acute febrile patients, Senegal. Am J Trop Med Hyg 91: 10151019.
    [Google Scholar]
  47. Koita OA et al., 2012. False-negative rapid diagnostic tests for malaria and deletion of the histidine-rich repeat region of the hrp2 gene. Am J Trop Med Hyg 86: 194198.
    [Google Scholar]
  48. Ho MF et al., 2014. Circulating antibodies against Plasmodium falciparum histidine-rich proteins 2 interfere with antigen detection by rapid diagnostic tests. Malar J 13: 480.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.19-0368
Loading
/content/journals/10.4269/ajtmh.19-0368
Loading

Data & Media loading...

Supplemental table and figure

  • Received : 12 May 2019
  • Accepted : 26 Sep 2019
  • Published online : 25 Nov 2019
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error