1921
Volume 102, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Accurate and cost-effective identification of areas where co-endemic infections occur would enable public health managers to identify opportunities for implementation of integrated control programs. Dried blood spots collected during cross-sectional lymphatic filariasis surveys in coastal Kenya were used for exploratory integrated detection of IgG antibodies against antigens from several parasitic infections (, , spp., , and ) as well as for detection of responses to immunizing agents used against vaccine-preventable diseases (VPDs) (measles, diphtheria, and tetanus) using a multiplex bead assay (MBA) platform. High heterogeneity was observed in antibody responses by pathogen and antigen across the sentinel sites. Antibody seroprevalence against filarial antigens were generally higher in Ndau Island ( < 0.0001), which also had the highest prevalence of filarial antigenemia compared with other communities. Antibody responses to the species antigens circumsporozoite protein (CSP) and merozoite surface protein-1 (MSP-1) were higher in Kilifi and Kwale counties, with Jaribuni community showing higher overall mean seroprevalence ( < 0.0001). Kimorigo community in Taita–Taveta County was the only area where antibody responses against Sm25 recombinant antigen were detected. Seroprevalence rates to antigen NIE ranged between 3% and 26%, and there was high heterogeneity in immune responses against an antigen among the study communities. Differences were observed between communities in terms of seroprevalence to VPDs. Seroprotection to tetanus was generally lower in Kwale County than in other counties. This study has demonstrated that MBA holds promise for rapid integrated monitoring of trends of infections of public health importance in endemic areas.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.19-0365
2019-11-25
2020-04-08
Loading full text...

Full text loading...

/deliver/fulltext/14761645/102/1/tpmd190365.html?itemId=/content/journals/10.4269/ajtmh.19-0365&mimeType=html&fmt=ahah

References

  1. Brooker S, Clements ACA, Hotez PJ, Hay SI, Tatem AJ, Bundy DAP, Snow RW, 2006. The co-distribution of Plasmodium falciparum and hookworm among African schoolchildren. Malar J 5: 18.
    [Google Scholar]
  2. Hotez PJ, Molyneux DH, Fenwick A, Ottesen E, Ehrlich Sachs S, Sachs JD, Bundy D, 2006. Incorporating a rapid-impact package for neglected tropical diseases with programs for HIV/AIDS, tuberculosis, and malaria. PLoS Med 3: e102.
    [Google Scholar]
  3. Molyneux DH, Hotez PJ, Fenwick A, 2005. “Rapid-impact interventions”: how a policy of integrated control for Africa’s neglected tropical diseases could benefit the poor. PLoS Med 2: 10641070.
    [Google Scholar]
  4. Hürlimann E, Yapi RB, Houngbedji CA, Schmidlin T, Kouadio BA, Silué KD, Ouattara M, N’Goran EK, Utzinger J, Raso G, 2014. The epidemiology of polyparasitism and implications for morbidity in two rural communities of Côte d’Ivoire. Parasit Vectors 7: 81.
    [Google Scholar]
  5. Keiser J, N’Goran EK, Traoré M, Lohourignon KL, Singer BH, Lengeler C, Tanner M, Utzinger J, 2002. Polyparasitism with Schistosoma mansoni, geohelminths, and intestinal protozoa in rural Côte d’Ivoire. J Parasitol 88: 461466.
    [Google Scholar]
  6. Raso G et al., 2004. Multiple parasite infections and their relationship to self-reported morbidity in a community of rural Cote d’Ivoire. Int J Epidemiol 33: 10921102.
    [Google Scholar]
  7. Moraga P et al., 2015. Modelling the distribution and transmission intensity of lymphatic filariasis in sub-Saharan Africa prior to scaling up interventions: integrated use of geostatistical and mathematical modelling. Parasit Vectors 8: 560.
    [Google Scholar]
  8. Munywoki PK, Ohuma EO, Ngama M, Bauni E, Scott JAG, Nokes DJ, 2013. Severe lower respiratory tract infection in early infancy and pneumonia hospitalizations among children, Kenya. Emerg Infect Dis 19: 223229.
    [Google Scholar]
  9. Njenga SM, Mwandawiro CS, Muniu E, Mwanje MT, Haji FM, Bockarie MJ, 2011. Adult population as potential reservoir of NTD infections in rural villages of Kwale district, Coastal Kenya: implications for preventive chemotherapy interventions policy. Parasit Vectors 4: 175.
    [Google Scholar]
  10. Okiro EA, Hay SI, Gikandi PW, Sharif SK, Noor AM, Peshu N, Marsh K, Snow RW, 2007. The decline in paediatric malaria admissions on the coast of Kenya. Malar J 6: 151.
    [Google Scholar]
  11. WHO, 2011. Monitoring and Epidemiological Assessment of Mass Drug Administration in the Global Programme to Eliminate Lymphatic Filariasis: A Manual for National Elimination Programmes. Geneva, Switzerland: World Health Organization.
    [Google Scholar]
  12. Stolk WA, Swaminathan S, van Oortmarssen GJ, Das PK, Habbema JDF, 2003. Prospects for elimination of bancroftian filariasis by mass drug treatment in Pondicherry, India: a simulation study. J Infect Dis 188: 13711381.
    [Google Scholar]
  13. Michael E, Bundy DA, Grenfell BT, 1996. Re-assessing the global prevalence and distribution of lymphatic filariasis. Parasitology 112: 409428.
    [Google Scholar]
  14. Sodahlon YK, Dorkenoo AM, Morgah K, Nabiliou K, Agbo K, Miller R, Datagni M, Seim A, Mathieu E, 2013. A success story: togo is moving toward becoming the first sub-Saharan African nation to eliminate lymphatic filariasis through mass drug administration and countrywide morbidity alleviation. PLoS Negl Trop Dis 7: e2080.
    [Google Scholar]
  15. WHO, 2017. Togo: First Country in Sub-saharan Africa to Eliminate Lymphatic Filariasis. Geneva, Switzerland: World Health Organization. Available at: http://www.who.int/neglected_diseases/news/Togo_saying_goodbye_lymphatic_filariasis/en/. Accessed May 20, 2017.
    [Google Scholar]
  16. Njenga SM, Mwandawiro CS, Wamae CN, Mukoko DA, Omar AA, Shimada M, Bockarie MJ, Molyneux DH, 2011. Sustained reduction in prevalence of lymphatic filariasis infection in spite of missed rounds of mass drug administration in an area under mosquito nets for malaria control. Parasit Vectors 4: 90.
    [Google Scholar]
  17. Njenga SM et al., 2017. Assessment of lymphatic filariasis prior to re-starting mass drug administration campaigns in coastal Kenya. Parasit Vectors 10: 99.
    [Google Scholar]
  18. Arnold BF, van der Laan MJ, Hubbard AE, Steel C, Kubofcik J, Hamlin KL, Moss DM, Nutman TB, Priest JW, Lammie PJ, 2017. Measuring changes in transmission of neglected tropical diseases, malaria, and enteric pathogens from quantitative antibody levels. PLoS Negl Trop Dis 11: e0005616.
    [Google Scholar]
  19. Wipasa J, Suphavilai C, Okell LC, Cook J, Corran PH, Thaikla K, Liewsaree W, Riley EM, Hafalla JCR, 2010. Long-lived antibody and B cell memory responses to the human malaria parasites, Plasmodium falciparum and Plasmodium vivax. PLoS Pathog 6: e1000770.
    [Google Scholar]
  20. Hamlin KL, Moss DM, Priest JW, Roberts J, Kubofcik J, Gass K, Streit TG, Nutman TB, Eberhard ML, Lammie PJ, 2012. Longitudinal monitoring of the development of antifilarial antibodies and acquisition of Wuchereria bancrofti in a highly endemic area of Haiti. PLoS Negl Trop Dis 6: e1941.
    [Google Scholar]
  21. Lammie PJ, Moss DM, Brook Goodhew E, Hamlin K, Krolewiecki A, West SK, Priest JW, 2012. Development of a new platform for neglected tropical disease surveillance. Int J Parasitol 42: 797800.
    [Google Scholar]
  22. Moss DM, Priest JW, Boyd A, Weinkopff T, Kucerova Z, Beach MJ, Lammie PJ, 2011. Multiplex bead assay for serum samples from children in Haiti enrolled in a drug study for the treatment of lymphatic filariasis. Am J Trop Med Hyg 85: 229237.
    [Google Scholar]
  23. Priest JW, Moss DM, Visvesvara GS, Jones CC, Li A, Isaac-Renton JL, 2010. Multiplex assay detection of immunoglobulin G antibodies that recognize Giardia intestinalis and Cryptosporidium parvum antigens. Clin Vaccine Immunol 17: 16951707.
    [Google Scholar]
  24. Priest JW et al., 2016. Integration of multiplex bead assays for parasitic diseases into a national, population-based serosurvey of women 15–39 years of age in Cambodia. PLoS Negl Trop Dis 10: e0004699.
    [Google Scholar]
  25. Arnold BF, Priest JW, Hamlin KL, Moss DM, Colford JM Jr., Lammie PJ, 2014. Serological measures of malaria transmission in Haiti: comparison of longitudinal and cross–sectional methods. PLoS One 9: e93684.
    [Google Scholar]
  26. Rogier E, Moss DM, Chard AN, Trinies V, Doumbia S, Freeman MC, Lammie PJ, 2016. Evaluation of immunoglobulin G responses to Plasmodium falciparum and Plasmodium vivax in Malian school children using multiplex bead assay. Am J Trop Med Hyg 96: 312318.
    [Google Scholar]
  27. Moss DM, Montgomery JM, Newland SV, Priest JW, Lammie PJ, 2004. Detection of cryptosporidium antibodies in sera and oral fluids using multiplex bead assay. J Parasitol 90: 397404.
    [Google Scholar]
  28. Rascoe LN, Price C, Shin SH, McAuliffe I, Priest JW, Handali S, 2015. Development of Ss-NIE-1 recombinant antigen based assays for immunodiagnosis of strongyloidiasis. PLoS Negl Trop Dis 9: e0003694.
    [Google Scholar]
  29. Rogier E et al., 2015. Multiple comparisons analysis of serological data from an area of low Plasmodium falciparum transmission. Malar J 14: 436.
    [Google Scholar]
  30. Won KY et al., 2017. Multiplex serologic assessment of schistosomiasis in western Kenya: antibody responses in preschool aged children as a measure of reduced transmission. Am J Trop Med Hyg 96: 14601467.
    [Google Scholar]
  31. Hummel KB, Erdman DD, Heath J, Bellini WJ, 1992. Baculovirus expression of the nucleoprotein gene of measles virus and utility of the recombinant protein in diagnostic enzyme immunoassays. J Clin Microbiol 30: 28742880.
    [Google Scholar]
  32. Scobie HM et al., 2016. Tetanus immunity among women aged 15 to 39 years in Cambodia: a national population-based serosurvey, 2012. Clin Vaccine Immunol 23: 546554.
    [Google Scholar]
  33. Priest JW, Plucinski MM, Huber CS, Rogier E, Mao B, Gregory CJ, Candrinho B, Colborn J, Barnwell JW, 2018. Specificity of the IgG antibody response to Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, and Plasmodium ovale MSP119 subunit proteins in multiplexed serologic assays. Malar J 17: 417.
    [Google Scholar]
  34. Benitez A, Priest JW, Ehigiator HN, McNair N, Mead JR, 2011. Evaluation of DNA encoding acidic ribosomal protein P2 of Cryptosporidium parvum as a potential vaccine candidate for cryptosporidiosis. Vaccine 29: 92399245.
    [Google Scholar]
  35. Ballou WR, Rothbard J, Wirtz RA, Gordon DM, Williams JS, Gore RW, Schneider I, Hollingdale MR, Beaudoin RL, Maloy WL, 1985. Immunogenicity of synthetic peptides from circumsporozoite protein of Plasmodium falciparum. Science 228: 996999.
    [Google Scholar]
  36. Dame JB, Williams JL, McCutchan TF, Weber JL, Wirtz RA, Hockmeyer WT, Maloy WL, Haynes JD, Schneider I, Roberts D, 1984. Structure of the gene encoding the immunodominant surface antigen on the sporozoite of the human malaria parasite Plasmodium falciparum. Science 225: 593599.
    [Google Scholar]
  37. Vlaminck J, Nejsum P, Vangroenweghe F, Thamsborg SM, Vercruysse J, Geldhof P, 2012. Evaluation of a serodiagnostic test using Ascaris suum haemoglobin for the detection of roundworm infections in pig populations. Vet Parasitol 189: 267273.
    [Google Scholar]
  38. Vlaminck J, Supali T, Geldhof P, Hokke CH, Fischer PU, Weil GJ, 2016. Community rates of IgG4 antibodies to Ascaris haemoglobin reflect changes in community egg loads following mass drug administration. PLoS Negl Trop Dis 10: e0004532.
    [Google Scholar]
  39. Borrow R, Balmer P, Roper MH, 2006. The Immunological basis for Immunization Series Module 3: Tetanus–Update 2006. Geneva, Switzerland: World Health Organization. Available at: http://apps.who.int/iris/bitstream/10665/43687/1/9789241595551_eng.pdf. Accessed September 15, 2017.
    [Google Scholar]
  40. Kristiansen M, Aggerbeck H, Heron I, 1997. Improved ELISA for determination of anti-diphtheria and/or anti-tetanus antitoxin antibodies in sera. APMIS 105: 843853.
    [Google Scholar]
  41. Scheifele DW, Ochnio JJ, 2009. The Immunologic Basis for Immunization Series: Module 2: Diphtheria–Update 2009. Geneva, Switzerland: World Health Organization. Available at: http://apps.who.int/iris/bitstream/10665/44094/1/9789241597869_eng.pdf. Accessed September 15, 2017.
    [Google Scholar]
  42. van Gageldonk PGM, von Hunolstein C, van der Klis FRM, Berbers GAM, 2011. Improved specificity of a multiplex immunoassay for quantitation of anti-diphtheria toxin antibodies with the use of diphtheria toxoid. Clin Vaccine Immunol 18: 11831186.
    [Google Scholar]
  43. Bentley M, Christian PD, Cohen BJ, Heath A, 2006. Report of a Collaborative Study to Assess the Suitability of a Replacement for the 2nd International Standard for Anti-Measles Sera, WHO/BS/06.2031. Geneva, Switzerland: World Health Organization. Available at: http://apps.who.int/iris/bitstream/10665/70612/1/WHO_BS_06.2031_eng.pdf. Accessed September 15, 2017.
    [Google Scholar]
  44. Benaglia T, Chauveau D, Hunter DR, Young DS, 2009. Mixtools: an R package for analyzing mixture models. J Stat Softw 32: 129.
    [Google Scholar]
  45. Lau CL, Won KY, Becker L, Soares Magalhaes RJ, Fuimaono S, Melrose W, Lammie PJ, Graves PM, 2014. Seroprevalence and spatial epidemiology of Lymphatic filariasis in American Samoa after successful mass drug administration. PLoS Negl Trop Dis 8: e3297.
    [Google Scholar]
  46. Joseph H, Maiava F, Naseri T, Silva U, Lammie P, Melrose W, 2011. Epidemiological assessment of continuing transmission of lymphatic filariasis in Samoa. Ann Trop Med Parasitol 105: 567578.
    [Google Scholar]
  47. Lau CL, Won KY, Lammie PJ, Graves PM, 2016. Lymphatic filariasis elimination in American Samoa: evaluation of molecular xenomonitoring as a surveillance tool in the endgame. PLoS Negl Trop Dis 10: e0005108.
    [Google Scholar]
  48. Witt C, Ottesen EA, 2001. Lymphatic filariasis: an infection of childhood. Trop Med Int Heal 6: 582606.
    [Google Scholar]
  49. Lammie PJ, Reiss MD, Dimock KA, Streit TG, Roberts JM, Eberhard ML, 1998. Longitudinal analysis of the development of filarial infection and antifilarial immunity in a cohort of Haitian children. Am J Trop Med Hyg 59: 217221.
    [Google Scholar]
  50. Kubofcik J, Fink DL, Nutman TB, 2012. Identification of Wb123 as an early and specific marker of Wuchereria bancrofti infection. PLoS Negl Trop Dis 6: e1930.
    [Google Scholar]
  51. Steel C, Kubofcik J, Ottesen EA, Nutman TB, 2012. Antibody to the filarial antigen Wb123 reflects reduced transmission and decreased exposure in children born following single mass drug administration (MDA). PLoS Negl Trop Dis 6: e1940.
    [Google Scholar]
  52. Mbogo CM et al., 2003. Spatial and temporal heterogeneity of anopheles mosquitoes and Plasmodium falciparum transmission along the Kenyan coast. Am J Trop Med Hyg 68: 734742.
    [Google Scholar]
  53. Pothin E, Ferguson NM, Drakeley CJ, Ghani AC, 2016. Estimating malaria transmission intensity from Plasmodium falciparum serological data using antibody density models. Malar J 15: 79.
    [Google Scholar]
  54. Wong J et al., 2014. Serological markers for monitoring historical changes in malaria transmission intensity in a highly endemic region of western Kenya, 1994–2009. Malar J 13: 451.
    [Google Scholar]
  55. Cook J, Reid H, Iavro J, Kuwahata M, Taleo G, Clements A, McCarthy J, Vallely A, Drakeley C, 2010. Using serological measures to monitor changes in malaria transmission in Vanuatu. Malar J 9: 169.
    [Google Scholar]
  56. Drakeley CJ et al., 2005. Estimating medium- and long-term trends in malaria transmission by using serological markers of malaria exposure. Proc Natl Acad Sci USA 102: 51085113.
    [Google Scholar]
  57. Dewasurendra RL, Dias JN, Sepulveda N, Gunawardena GSA, Chandrasekharan N, Drakeley C, Karunaweera ND, 2017. Effectiveness of a serological tool to predict malaria transmission intensity in an elimination setting. BMC Infect Dis 17: 49.
    [Google Scholar]
  58. Badu K et al., 2012. Marked variation in MSP-119 antibody responses to malaria in western Kenyan highlands. BMC Infect Dis 12: 50.
    [Google Scholar]
  59. Njaanake KH, Vennervald BJ, Simonsen PE, Madsen H, Mukoko DA, Kimani G, Jaoko WG, Estambale BB, 2015. Schistosoma haematobium and soil-transmitted helminths in Tana delta district of Kenya: infection and morbidity patterns in primary schoolchildren from two isolated villages. BMC Infect Dis 16: 57.
    [Google Scholar]
  60. Clennon JA, King CH, Muchiri EM, Kariuki HC, Ouma JH, Mungai P, Kitron U, 2004. Spatial patterns of urinary schistosomiasis infection in a highly endemic area of coastal Kenya. Am J Trop Med Hyg 70: 443448.
    [Google Scholar]
  61. Brown DS, Jelnes JE, Kinoti GK, Ouma J, 1981. Distribution in Kenya of intermediate hosts of Schistosoma. Trop Geogr Med 33: 95103.
    [Google Scholar]
  62. Gouvras AN, Kariuki C, Koukounari A, Norton AJ, Lange CN, Ireri E, Fenwick A, Mkoji GM, Webster JP, 2013. The impact of single versus mixed Schistosoma haematobium and S. mansoni infections on morbidity profiles amongst school-children in Taveta, Kenya. Acta Trop 128: 309317.
    [Google Scholar]
  63. Thiongo FW, Ouma JH, 1987. Prevalence of schistosomes and other parasites in Taita division of Taita-Taveta district. East Afr Med J 64: 665671.
    [Google Scholar]
  64. Tsang VC, Hancock K, Kelly MA, Wilson BC, Maddison SE, 1983. Schistosoma mansoni adult microsomal antigens, a serologic reagent. II. Specificity of antibody responses to the S. mansoni microsomal antigen (MAMA). J Immunol 130: 13661370.
    [Google Scholar]
  65. Steinmann P, Zhou X-N, Du Z-W, Jiang J-Y, Wang L-B, Wang X-Z, Li L-H, Marti H, Utzinger J, 2007. Occurrence of Strongyloides stercoralis in Yunnan province, China, and comparison of diagnostic methods. PLoS Negl Trop Dis 1: e75.
    [Google Scholar]
  66. Glinz D, Silué KD, Knopp S, Lohourignon LK, Yao KP, Steinmann P, Rinaldi L, Cringoli G, N’Goran EK, Utzinger J, 2010. Comparing diagnostic accuracy of Kato-Katz, Koga agar plate, ether-concentration, and FLOTAC for Schistosoma mansoni and soil-transmitted helminths. PLoS Negl Trop Dis 4: e754.
    [Google Scholar]
  67. Krolewiecki AJ et al., 2010. Improved diagnosis of Strongyloides stercoralis using recombinant antigen-based serologies in a community-wide study in northern Argentina. Clin Vaccine Immunol 17: 16241630.
    [Google Scholar]
  68. Bisoffi Z et al., 2014. Diagnostic accuracy of five serologic tests for Strongyloides stercoralis infection. PLoS Negl Trop Dis 8: e2640.
    [Google Scholar]
  69. Kearns TM et al., 2017. Strongyloides seroprevalence before and after an ivermectin mass drug administration in a remote Australian aboriginal community. PLoS Negl Trop Dis 11: e0005607.
    [Google Scholar]
  70. Mounsey K, Kearns T, Rampton M, Llewellyn S, King M, Holt D, Currie BJ, Andrews R, Nutman T, McCarthy J, 2014. Use of dried blood spots to define antibody response to the Strongyloides stercoralis recombinant antigen NIE. Acta Trop 138: 7882.
    [Google Scholar]
  71. Brenzel L, Wolfson LJ, Fox-Rushby J, Miller M, Halsey NA, 2006. Vaccine-Preventable Diseases. Jamison D, Breman J, Measham A, eds, 2nd edition. New York, NY: Oxford University Press. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21250343. Accessed July 3, 2017.
    [Google Scholar]
  72. Migchelsen SJ et al., 2017. Defining seropositivity thresholds for use in trachoma elimination studies. PLoS Negl Trop Dis 11: e0005230.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.19-0365
Loading
/content/journals/10.4269/ajtmh.19-0365
Loading

Data & Media loading...

Supplemental figures

  • Received : 11 May 2019
  • Accepted : 11 Sep 2019
  • Published online : 25 Nov 2019

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error