1921
Volume 101, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Traditional African medicine is a source of new molecules that might be useful in modern therapeutics. We tested ten limonoids, six quinones, one xanthone, one alkaloid, and one cycloartane, isolated from four Cameroonian medicinal plants, and one plant-associated endophytic fungus, against , the etiological agent of Chagas disease (CD). Vero cells, or human-induced pluripotent stem cells (hiPSC)–derived cardiomyocytes (hiPSC-CM) were infected with trypomastigotes (discrete typing unit types I or II). Infection took place in the presence of drugs, or 24 hours before drug treatment. Forty-eight hours after infection, infection rates and parasite multiplication were evaluated by Giemsa stain. Cell metabolism was measured to determine functional integrity. In Vero cells, several individual molecules significantly affected infection and multiplication with no, or minor, effects on cell viability. Reduced infection rates and multiplication by the quinone vismione B was superior to the commonly used therapeutic benznidazole (BNZ). The vismione B concentration inhibiting 50% of infection (IC) was 1.3 µM. When drug was applied after infection, anti- effects of vismione B [10 µM) were significantly stronger than effects of BNZ (23 µM). Furthermore, in hiPSC-CM cultures, infection and multiplication rates in the presence of vismione B (10 µM) were significantly lower than in BNZ (11.5 µM), without showing signs of cytotoxicity. Our data indicate that vismione B is more potent against infection and multiplication than BNZ, with stronger effects on established infection. Vismione B, therefore, might become a promising lead molecule for treatment development for CD.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.19-0350
2019-09-30
2021-01-25
Loading full text...

Full text loading...

/deliver/fulltext/14761645/101/6/tpmd190350.html?itemId=/content/journals/10.4269/ajtmh.19-0350&mimeType=html&fmt=ahah

References

  1. World Health Organization, 2015. Chagas disease in Latin America: an epidemiological update based on 2010 estimates. Wkly Epidemiol Rec 90: 3344.
    [Google Scholar]
  2. Bern C, Kjos S, Yabsley MJ, Montgomery SP, 2011. Trypanosoma cruzi and Chagas’ disease in the United States. Clin Microbiol Rev 24: 655681.
    [Google Scholar]
  3. Bern C, Montgomery SP, 2009. An estimate of the burden of Chagas disease in the United States. Clin Infect Dis 49: e52e54.
    [Google Scholar]
  4. Jurberg C, 2009. Chagas: one hundred years later. Bull World Health Organ 87: 491492.
    [Google Scholar]
  5. Kirchhoff LV, 2011. Epidemiology of American trypanosomiasis (Chagas disease). Adv Parasitol 75: 118.
    [Google Scholar]
  6. Tanowitz HB, Kirchhoff LV, Simon D, Morris SA, Weiss LM, Wittner M, 1992. Chagas’ disease. Clin Microbiol Rev 5: 400419.
    [Google Scholar]
  7. Coura JR, Vinas PA, 2010. Chagas disease: a new worldwide challenge. Nature 465: S6S7.
    [Google Scholar]
  8. Manne-Goehler J, Umeh CA, Montgomery SP, Wirtz VJ, 2016. Estimating the burden of Chagas disease in the United States. PLoS Negl Trop Dis 10: e0005033.
    [Google Scholar]
  9. Brown EL, Roellig DM, Gompper ME, Monello RJ, Wenning KM, Gabriel MW, Yabsley MJ, 2010. Seroprevalence of Trypanosoma cruzi among eleven potential reservoir species from six states across the southern United States. Vector Borne Zoonotic Dis 10: 757763.
    [Google Scholar]
  10. Zingales B et al., 2012. The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infect Genet Evol 12: 240253.
    [Google Scholar]
  11. Vago AR, Andrade LO, Leite AA, d'Avila Reis D, Macedo AM, Adad SJ, Tostes S Jr., Moreira MC, Filho GB, Pena SD, 2000. Genetic characterization of Trypanosoma cruzi directly from tissues of patients with chronic Chagas disease: differential distribution of genetic types into diverse organs. Am J Pathol 156: 18051809.
    [Google Scholar]
  12. Sales Junior PA, Molina I, Fonseca Murta SM, Sánchez-Montalvá A, Salvador F, Corrêa-Oliveira R, Carneiro CM, 2017. Experimental and clinical treatment of Chagas Disease: a review. Am J Trop Med Hyg 97: 12891303.
    [Google Scholar]
  13. de Andrade AL, Zicker F, de Oliveira RM, Almeida Silva S, Luquetti A, Travassos LR, Almeida IC, de Andrade SS, de Andrade JG, Martelli CM, 1996. Randomised trial of efficacy of benznidazole in treatment of early Trypanosoma cruzi infection. Lancet 348: 14071413.
    [Google Scholar]
  14. Fragata Filho AA, da Silva MA, Boainain E, 1995. Ethiologic treatment of acute and chronic Chagas’ disease [corrected]. Sao Paulo Med J 113: 867872.
    [Google Scholar]
  15. Urbina JA, 2010. Specific chemotherapy of Chagas disease: relevance, current limitations and new approaches. Acta Trop 115: 5568.
    [Google Scholar]
  16. Louppe D, 2008. PROTA (Plant resources of tropical Africa), Paris, France. Vol. 8: 758.
  17. Pupo MT, Vieira PC, Fernandes JB, Silva MFGF, Pirani JR, 2002. Terpenoids and steroids from Trichilia species. J Braz Chem Soc 13: 382388.
    [Google Scholar]
  18. Fobofou SAT, Franke K, Schmidt J, Wessjohann L, 2015. Chemical constituents of Psorospermum densipunctatum (Hypericaceae). Biochem Syst Ecol 59: 174176.
    [Google Scholar]
  19. Zhang L, Wang G, Hou W, Li P, Dulin A, Bonkovsky HL, 2010. Contemporary clinical research of traditional Chinese medicines for chronic hepatitis B in China: an analytical review. Hepatology 51: 690698.
    [Google Scholar]
  20. Armelle TT, Pamela NK, Pierre M, Müller IB, Marat K, Sass G, Ephrem NA, 2016. Antiplasmodial limonoids from Trichilia rubescens (Meliaceae). Med Chem 12: 655661.
    [Google Scholar]
  21. Lange N, Tontsa AT, Wegscheid C, Mkounga P, Nkengfack AE, Loscher C, Sass G, Tiegs G, 2016. The limonoids TS3 and Rubescin E induce apoptosis in human hepatoma cell lines and interfere with NF-κB signaling. PLoS One 11: e0160843.
    [Google Scholar]
  22. Kemegne GA, Mkounga P, Essia Ngang JJ, Sado Kamdem SL, Nkengfack AE, 2017. Antimicrobial structure activity relationship of five anthraquinones of emodine type isolated from Vismia laurentii. BMC Microbiol 17: 41.
    [Google Scholar]
  23. Krief S, Martin MT, Grellier P, Kasenene J, Sévenet T, 2004. Novel antimalarial compounds isolated in a survey of self-medicative behavior of wild chimpanzees in Uganda. Antimicrob Agents Chemother 48: 31963319.
    [Google Scholar]
  24. Tsamo Tontsa A, Mkounga P, Njayou FN, Manautou J, Kirk M, Hultin PG, Nkengfack AE, 2013. Rubescins A, B and C: new havanensin type limonoids from root bark of Trichilia rubescens (Meliaceae). Chem Pharm Bull (Tokyo) 61: 11781183.
    [Google Scholar]
  25. Tsamo AT, Pagna JIM, Nangmo PK, Mkounga P, Laatsch H, Nkengfack AE, 2019. Rubescins F-H, new vilasinin-type limonoids from the leaves of Trichilia rubescens (Meliaceae). Z Naturforsch C 74: 175182.
    [Google Scholar]
  26. deCarvalho AC, Ndi CP, Tsopmo A, Tane P, Ayafor J, Connolly JD, Teem JL, 2002. A novel natural product compound enhances cAMP-regulated chloride conductance of cells expressing CFTR[delta]F508. Mol Med 8: 7587.
    [Google Scholar]
  27. Aldridge DC, Turner WB, 1969. The identity of zygosporin A and cytochalasin D. J Antibiot (Tokyo) 22: 170.
    [Google Scholar]
  28. Morrison TG, McGinnes LJ, 1985. Cytochalasin D accelerates the release of Newcastle disease virus from infected cells. Virus Res 4: 93106.
    [Google Scholar]
  29. Nangmo KP, Akone SH, Tsamo TA, Zhen L, Mueller WEG, Proksch P, Nkengfack AE, 2017. Colletotrin: a sesquiterpene lactone from the endophytic fungus Colletotrichum gloeosporioides associated with Trichilia monadelpha. Z Naturforsch B 72: 697703.
    [Google Scholar]
  30. Nangmo KP, Tsamo TA, Zhen L, Mkounga P, Akone SH, Tsabang N, Muller WEG, Proksch P, Nkengfack AE, 2018. Chemical constituents from leaves and root bark of Trichilia monadelpha (Meliaceae). Phytochem Lett 23: 120126.
    [Google Scholar]
  31. Dzoyem JP, Tsamo AT, Melong R, Mkounga P, Nkengfack AE, McGaw LJ, Eloff JN, 2015. Cytotoxicity, nitric oxide and acetylcholinesterase inhibitory activity of three limonoids isolated from Trichilia welwitschii (Meliaceae). Biol Res 48: 57.
    [Google Scholar]
  32. Tsamo A, Langat MK, Nkounga P, Waffo AFK, Nkengfack AE, Mulhollan DA, 2013. Limonoids from the west African Trichilia welwitschii (Meliaceae). Biochem Syst Ecol 50: 368370.
    [Google Scholar]
  33. Brader G, Vajrodaya S, Greger H, Bacher M, Kalchhauser H, Hofer O, 1998. Bisamides, lignans, triterpenes, and insecticidal cyclopenta[b]benzofurans from Aglaia species. J Nat Prod 61: 14821490.
    [Google Scholar]
  34. Hussein AA, Bozzi B, Correa M, Capson TL, Kursar TA, Coley PD, Solis PN, Gupta MP, 2003. Bioactive constituents from three Vismia species. J Nat Prod 66: 858860.
    [Google Scholar]
  35. Delle Monache F, Botta B, Delle Monache G, Marini Bettolo GB, 1985. Prenylated anthranoids from Psorospermum species. Phytochemistry 24: 18551856.
    [Google Scholar]
  36. Reyes-Chilpa R, Gómez-Cansino R, Guzmán-Gutiérrez SL, Hernández-Ortega S, Campos-Lara M, Vega-Avila E, Nieto-Camacho A, 2014. Anthraquinones from Vismia mexicana. Z Naturforsch C 69: 2934.
    [Google Scholar]
  37. De Oliveira WG, Lins Mesquita AA, de Lima RA, Gotlieb OR, Gottlieb HE, 1984. Xanthones from Tovomita excelsa. Phytochemistry 23: 23902391.
    [Google Scholar]
  38. Churko JM, Burridge PW, Wu JC, 2013. Generation of human iPSCs from human peripheral blood mononuclear cells using non-integrative Sendai virus in chemically defined conditions. Methods Mol Biol 1036: 8188.
    [Google Scholar]
  39. Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, Raval KK, Zhang J, Kamp TJ, Palecek SP, 2012. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci USA 109: E1848E1857.
    [Google Scholar]
  40. Andrade D et al., 2012. Trypanosoma cruzi invades host cells through the activation of endothelin and bradykinin receptors: a converging pathway leading to chagasic vasculopathy. Br J Pharmacol 165: 13331347.
    [Google Scholar]
  41. Burridge PW et al., 2014. Chemically defined generation of human cardiomyocytes. Nat Methods 11: 855860.
    [Google Scholar]
  42. Scudiero DA, Shoemaker RH, Paull KD, Monks A, Tierney S, Nofziger TH, Currens MJ, Seniff D, Boyd MR, 1988. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res 48: 48274833.
    [Google Scholar]
  43. Richle RW, Raaflaub J, 1980. Difference of effective antitrypanosomal dosages of benznidazole in mice and man. Chemotherapeutic and pharmacokinetic results. Acta Trop 37: 257261.
    [Google Scholar]
  44. Coura JR, de Castro SL, 2002. A critical review on Chagas disease chemotherapy. Mem Inst Oswaldo Cruz 97: 324.
    [Google Scholar]
  45. Murta AC, Persechini PM, Padron Tde S, de Souza W, Guimarães JA, Scharfstein J, 1990. Structural and functional identification of GP57/51 antigen of Trypanosoma cruzi as a cysteine proteinase. Mol Biochem Parasitol 43: 2738.
    [Google Scholar]
  46. Sueth-Santiago V, Decote-Ricardo D, Morrot A, Freire-de-Lima CG, Lima ME, 2017. Challenges in the chemotherapy of Chagas disease: looking for possibilities related to the differences and similarities between the parasite and host. World J Biol Chem 8: 5780 [Review].
    [Google Scholar]
  47. Clemons KV, Sobel RA, Martinez M, Correa Oliveira R, Stevens DA, 2017. Lack of efficacy of liposomal amphotericin B against acute and chronic Trypanosoma cruzi infection in mice. Am J Trop Med Hyg 97: 11411146.
    [Google Scholar]
  48. Sass G, Madigan RT, Joubert LM, Bozzi A, Sayed N, Wu JC, Stevens DA, 2019. A combination of itraconazole and amiodarone is highly effective against Trypanosoma cruzi infection of human stem cell-derived cardiomyocytes. Am J Trop Med Hyg 101: 383391.
    [Google Scholar]
  49. Hoet S, Stévigny C, Block S, Opperdoes F, Colson P, Baldeyrou B, Lansiaux A, Bailly C, Quetin-Leclercq J, 2004. Alkaloids from Cassytha filiformis and related aporphines: antitrypanosomal activity, cytotoxicity, and interaction with DNA and topoisomerases. Planta Med 70: 407413.
    [Google Scholar]
  50. Wube AA, Bucar F, Gibbons S, Asres K, Rattray L, Croft SL, 2010. Antiprotozoal activity of drimane and coloratane sesquiterpenes towards Trypanosoma brucei rhodesiense and Plasmodium falciparum in vitro. Phytother Res 24: 14681472.
    [Google Scholar]
  51. Nwodo N, Okoye F, Lai D, Debbab A, Kaiser M, Brun R, Proksch P, 2015. Evaluation of the in vitro trypanocidal activity of methylated flavonoid constituents of Vitex simplicifolia leaves. BMC Complement Altern Med 15: 82.
    [Google Scholar]
  52. Nwodo NJ, Okoye FB, Lai D, Debbab A, Brun R, Proksch P, 2014. Two trypanocidal dipeptides from the roots of Zapoteca portoricensis (Fabaceae). Molecules 19: 54705477.
    [Google Scholar]
  53. Githua M, Hassanali A, Keriko J, Murilla G, Ndungu M, Nyagah G, 2010. New antitrypanosomal tetranotriterpenoids from Azadirachta indica. Afr J Tradit Complement Altern Med 7: 207213.
    [Google Scholar]
  54. Leite AC, Ambrozin AR, Fernandes JB, Vieira PC, da Silva MF, de Albuquerque S, 2008. Trypanocidal activity of limonoids and triterpenes from Cedrela fissilis. Planta Med 74: 17951799.
    [Google Scholar]
  55. Laphookhieo S, Maneerat W, Koysomboon S, 2009. Antimalarial and cytotoxic phenolic compounds from Cratoxylum maingayi and Cratoxylum cochinchinense. Molecules 14: 13891395.
    [Google Scholar]
  56. Duran-Rehbein GA, Vargas-Zambrano JC, Cuéllar A, Puerta CJ, Gonzalez JM, 2014. Mammalian cellular culture models of Trypanosoma cruzi infection: a review of the published literature. Parasite 21: 38 [Review].
    [Google Scholar]
  57. Piras MM, Piras R, Henriquez D, Negri S, 1982. Changes in morphology and infectivity of cell culture-derived trypomastigotes of Trypanosoma cruzi. Mol Biochem Parasitol 6: 6781.
    [Google Scholar]
  58. Todorov AG et al., 2003. Trypanosoma cruzi induces edematogenic responses in mice and invades cardiomyocytes and endothelial cells in vitro by activating distinct kinin receptor (B1/B2) subtypes. FASEB J 17: 7375.
    [Google Scholar]
  59. Bozzi A, Sayed N, Matsa E, Sass G, Neofytou E, Clemons KV, Correa-Oliveira R, Stevens DA, Wu JC, 2019. Using human induced pluripotent stem cell-derived cardiomyocytes as a model to study Trypanosoma cruzi infection. Stem Cell Rep 12: 12321241.
    [Google Scholar]
  60. Gutteridge WE, Knowler J, Coombes JD, 1969. Growth of Trypanosoma cruzi in human heart tissue cells and effects of aminonucleoside of puromycin, trypacidin and aminopterin. J Protozool 16: 521525.
    [Google Scholar]
  61. da Silva Lara L, Andrade-Lima L, Calvet CM, Borsoi J, Alberto Duque TL, Henriques-Pons A, Souza Pereira MC, Pereira LV, 2018. Trypanosoma cruzi infection of human induced pluripotent stem cell-derived cardiomyocytes: an in vitro model for drug screening for Chagas disease. Microbes Infect 20: 312316.
    [Google Scholar]
  62. Valenzuela L, Sepúlveda S, Ponce I, Galanti N, Cabrera G, 2018. The overexpression of TcAP1 endonuclease confers resistance to infective Trypanosoma cruzi trypomastigotes against oxidative DNA damage. J Cell Biochem 119: 59855995.
    [Google Scholar]
  63. Finzi JK, Chiavegatto CW, Corat KF, Lopez JA, Cabrera OG, Mielniczki-Pereira AA, Colli W, Alves MJ, Gadelha FR, 2004. Trypanosoma cruzi response to the oxidative stress generated by hydrogen peroxide. Mol Biochem Parasitol 133: 3743.
    [Google Scholar]
  64. Li DL, Li XM, Wang BG, 2009. Natural anthraquinone derivatives from a marine mangrove plant-derived endophytic fungus Eurotium rubrum: structural elucidation and DPPH radical scavenging activity. J Microbiol Biotechnol 19: 675680.
    [Google Scholar]
  65. Aviello G, Rowland I, Gill CI, Acquaviva AM, Capasso F, McCann M, Capasso R, Izzo AA, Borrelli F, 2010. Anti-proliferative effect of rhein, an anthraquinone isolated from Cassia species, on Caco-2 human adenocarcinoma cells. J Cell Mol Med 14: 20062014.
    [Google Scholar]
  66. Garcia MN, Burroughs H, Gorchakov R, Gunter SM, Dumonteil E, Murray KO, Herrera CP, 2017. Molecular identification and genotyping of Trypanosoma cruzi DNA in autochthonous Chagas disease patients from Texas, USA. Infect Genet Evol 49: 151156.
    [Google Scholar]
  67. Mbwambo ZH, Apers S, Moshi MJ, Kapingu MC, Van Miert S, Claeys M, Brun R, Cos P, Pieters L, Vlietinck A, 2004. Anthranoid compounds with antiprotozoal activity from Vismia orientalis. Planta Med 70: 706710.
    [Google Scholar]
  68. Cassinelli G, Geroni C, Botta B, delle Monache G, delle Monache F, 1986. Cytotoxic and antitumor activity of vismiones isolated from vismieae. J Nat Prod 49: 929931.
    [Google Scholar]
  69. Tewabe Y, Bisrat D, Terefe G, Asres K, 2014. Antitrypanosomal activity of aloin and its derivatives against Trypanosoma congolense field isolate. BMC Vet Res 10: 61.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.19-0350
Loading
/content/journals/10.4269/ajtmh.19-0350
Loading

Data & Media loading...

  • Received : 06 May 2019
  • Accepted : 23 Aug 2019
  • Published online : 30 Sep 2019
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error