1921
Volume 103, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

is the etiological agent of Chagas disease that infects more than seven million people in Latin America. The parasite is transmitted by triatomine insects, of which some species are often associated with palms. The establishment of oil palm plantations () in the Orinoco region (Colombia) has been rapidly growing, possibly constituting a new environment for the establishment and increase in triatomine populations. In this study, the potential of to colonize plantations and maintain transmission was assessed. Fieldwork was conducted in two areas located in the department of Casanare for sampling and palms, sampling for triatomines to determine their abundance and prevalence of infection. To assess transmission potential in the area, sylvatic and domestic mammals were sampled. Results showed that palm infestation with triatomines was higher in than in palms and infection in triatomines varied between habitats for one study area, but was constant in the other site. –infected mammals in the plantations were mainly generalist rodents, suggesting that these mammals could have an important role in transmission in plantations. In conclusion, plantations in the Orinoco region are suitable habitats for and transmission.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.19-0331
2020-05-26
2020-09-28
Loading full text...

Full text loading...

/deliver/fulltext/14761645/103/1/tpmd190331.html?itemId=/content/journals/10.4269/ajtmh.19-0331&mimeType=html&fmt=ahah

References

  1. World Health Organization, 2010. WHA63.20. WHO Eighth Plentary Meeting, 21 May 2010, Committee A, Fifth Report. Geneva, Switzerland: WHO.
    [Google Scholar]
  2. Rassi A Jr., Rassi A, Marin-Neto JA, 2010. Chagas disease. Lancet 375: 13881402.
    [Google Scholar]
  3. Moncayo A, Silveira AC, 2009. Current epidemiological trends for Chagas disease in Latin America and future challenges in epidemiology, surveillance and health policy. Mem Inst Oswaldo Cruz 104 (Suppl 1): 1730.
    [Google Scholar]
  4. Guhl F. 1999. Estado actual del control de la enfermedad de chagas en Colombia. Medicina (B Aires) 59 (Suppl 2): 103116.
    [Google Scholar]
  5. Abad-Franch F et al., 2015. On palms, bugs, and Chagas disease in the Americas. Acta Trop 151: 126141.
    [Google Scholar]
  6. Sanchez-Martin MJ, Feliciangeli MD, Campbell-Lendrum D, Davies CR, 2006. Could the Chagas disease elimination programme in Venezuela be compromised by reinvasion of houses by sylvatic Rhodnius prolixus bug populations? Trop Med Int Health 11: 15851593.
    [Google Scholar]
  7. Rendon LM, Guhl F, Cordovez JM, Erazo D, 2015. New scenarios of Trypanosoma cruzi transmission in the Orinoco region of Colombia. Mem Inst Oswaldo Cruz 110: 283288.
    [Google Scholar]
  8. Guhl F, Pinto N, Marín D, Herrera C, Aguilera G, Naranjo J, Vallejo G, 2005. Primer reporte de Rhodnius prolixus Stal, en Elaeis guineensis variedad Papúa, en plantaciones agroindustriales de Villanueva, Casanare. Biomédica 25: 158159.
    [Google Scholar]
  9. Henson IE, Romero RR, Romero HM, 2011. The growth of the oil palm industry in Colombia. J Oil Palm Res 23: 11211128.
    [Google Scholar]
  10. Castiblanco C, Etter A, Aide TM, 2013. Oil palm plantations in Colombia: a model of future expansion. Environ Sci Pol 27: 172183.
    [Google Scholar]
  11. Cordovez JM, Guhl F, 2015. The impact of landscape transformation on the reinfestation rates of Rhodnius prolixus in the Orinoco region, Colombia. Acta Trop 151: 7379.
    [Google Scholar]
  12. Gottdenker NL, Streicker DG, Faust CL, Carroll CR, 2014. Anthropogenic land use change and infectious diseases: a review of the evidence. Ecohealth 11: 619632.
    [Google Scholar]
  13. Kwa BH, 2008. Environmental change, development and vectorborne disease: malaysia’s experience with filariasis, scrub typhus and dengue. Environ Dev Sustain 10: 209217.
    [Google Scholar]
  14. Pluess B, Mueller I, Levi D, King G, Smith TA, Lengeler C, 2009. Malaria–a major health problem within an oil palm plantation around Popondetta, Papua New Guinea. Malar J 8: 56.
    [Google Scholar]
  15. Guhl F, Aguilera G, Pinto N, Vergara D, 2007. Actualización de la distribución geográfica y ecoepidemiología de la fauna de triatominos ( Reduviidae: Triatominae ) en Colombia. Biomédica 27: 143162.
    [Google Scholar]
  16. Minorta-Cely V, Rangel-Churio JO, 2014. El clima de la Orinoquia colombiana. Olombia Diversidad Biótica XIV. La Región De La Orinoquia De Colombia. Bogotá, Colombia: Instituto de Ciencias Naturales, Universidad Nacional de Colombia, 153206.
    [Google Scholar]
  17. Angulo VM, Esteban L, 2011. Nueva trampa para la captura de triatominos en hábitats silvestres y peridomésticos. Biomédica 31: 264268.
    [Google Scholar]
  18. Angulo VM, Esteban L, Luna KP, 2012. Attalea butyracea próximas a las viviendas como posible fuente de infestación domiciliaria por Rhodnius prolixus (Hemiptera: Reduviidae) en los Llanos Orientales de Colombia. Biomédica 32: 277285.
    [Google Scholar]
  19. Parmenter RR et al., 2003. Small-mammal density estimation: a field comparison of grid-based vs. web-based density estimators. Ecol Monogr 73: 126.
    [Google Scholar]
  20. Britto C, Cardoso MA, Vanni CM, Hasslocher-Moreno A, Xavier SS, Oelemann W, Santoro A, Pirmez C, Morel CM, Wincker P, 1995. Polymerase chain reaction detection of Trypanosoma cruzi in human blood samples as a tool for diagnosis and treatment evaluation. Parasitology 110 (Pt 3): 241247.
    [Google Scholar]
  21. Lent H, Wygodzinsky P, 1979. Revision of the Triatominae (Hemiptera, Reduviidae), and their significance as vectors of Chagas disease. Bull Am Museum Nat Hist 163: 123520.
    [Google Scholar]
  22. Fitzpatrick S, Feliciangeli MD, Sanchez-Martin MJ, Monteiro Fa, Miles Ma, 2008. Molecular genetics reveal that silvatic Rhodnius prolixus do colonise rural houses. PLoS Negl Trop Dis 2: e210.
    [Google Scholar]
  23. Sawabe K et al., 2010. Host-feeding habits of Culex pipiens and Aedes albopictus (Diptera: Culicidae) collected at the urban and suburban residential areas of Japan. J Med Entomol 47: 442450.
    [Google Scholar]
  24. Ivanova NV, Clare EL, Borisenko AV, 2012;. DNA barcoding in mammals. Methods Mol Biol 858: 153182.
    [Google Scholar]
  25. R Development Core Team, 2016. R: A Language and Environment for Statistical Computing. Vienna Austria: R Foundation for Statistical Computing.
    [Google Scholar]
  26. Paradis E, Claude J, Strimmer K, 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289290.
    [Google Scholar]
  27. Hiemstra PH, Pebesma EJ, Twenhöfel CJW, Heuvelink GBM, 2007. Automatic real-time interpolation of radiation hazards: a prototype and system architecture considerations. Int J Spat Data Infrastruct Res 3: 5872.
    [Google Scholar]
  28. Cuba Cuba CA, Abad-Franch F, Rodríguez JR, Vásquez FV, Velasquez LP, Miles MA, 2002. The triatomines of northern Peru, with emphasis on the ecology and infection by trypanosomes of Rhodnius ecuadoriensis (Triatominae). Mem Inst Oswaldo Cruz 97: 175183.
    [Google Scholar]
  29. Abad-Franch F, Palomeque FS, Aguilar VHM, Miles MA, 2005. Field ecology of sylvatic Rhodnius populations (Heteroptera, Triatominae): risk factors for palm tree infestation in western Ecuador. Trop Med Int Health 10: 12581266.
    [Google Scholar]
  30. Jaramillo N, Schofield CJ, Gorla D, Caro-Riaño H, Moreno J, Mejia E, Dujardin JP, 2000. The Role of Rhodnius pallescens as a vector of Chagas disease in Colombia and Panama. Res Rev Parasitol 60: 7582.
    [Google Scholar]
  31. Schofield CJ, Galvão C, 2009. Classification, evolution, and species groups within the Triatominae. Acta Trop 110: 88100.
    [Google Scholar]
  32. Dias FBS, Quartier M, Diotaiuti L, Mejía G, Harry M, Lima ACL, Davidson R, Mertens F, Lucotte M, Romaña CA, 2014. Ecology of Rhodnius robustus larrousse, 1927 (Hemiptera, Reduviidae, Triatominae) in Attalea palm trees of the Tapajós river region (Pará state, Brazilian Amazon). Parasit Vectors 7: 154.
    [Google Scholar]
  33. Urbano P, Poveda C, Molina J, 2015. Effect of the physiognomy of Attalea butyracea (Arecoideae) on population density and age distribution of Rhodnius prolixus (Triatominae). Parasit Vectors 8: 112.
    [Google Scholar]
  34. Suarez-Davalos V, Dangles O, Villacis AG, Grijalva MJ, 2010. Microdistribution of sylvatic triatomine populations in central-coastal Ecuador. J Med Entomol 47: 8088.
    [Google Scholar]
  35. Fahrig L, 2003. Effects of habitat fragmention on biodiversity. Annu Rev Ecol Syst 34: 487515.
    [Google Scholar]
  36. Valente VC, Valente SAS, Noireau F, Carrasco HJ, Miles MA, 1998. Chagas disease in the Amazon Basin: association of Panstrongylus geniculatus (Hemiptera: Reduviidae) with domestic pigs. J Med Entomol 35: 99103.
    [Google Scholar]
  37. Noireau F, Diosque P, Jansen AM, 2009. Trypanosoma cruzi: adaptation to its vectors and its hosts. Vet Res 40: 123.
    [Google Scholar]
  38. Gurgel-Gonçalves R, Duarte MA, Ramalho ED, Torre Palma AR, Romaña CA, Cuba-cuba CA, 2004. Spatial distribution of Triatominae populations ( Hemiptera: Reduviidae ) in Mauritia flexuosa palm trees in Federal district of Brazil. Rev Soc Bras Med Trop 37: 241247.
    [Google Scholar]
  39. Gottdenker NL, Calzada JE, Saldaña A, Carroll CR, 2011. Association of anthropogenic land use change and increased abundance of the Chagas disease vector Rhodnius pallescens in a rural landscape of Panama. Am J Trop Med Hyg 84: 7077.
    [Google Scholar]
  40. Emmons L, 1990. Neotropical Rainforest Mammals. A Field Guide. Chicago, London: The University of Chicago Press.
    [Google Scholar]
  41. Suzán G, Armién A, Mills JN, Marcé E, Ceballos G, Ávila M, Salazar-Bravo J, Ruedas L, Armién B, Yates TL, 2008. Epidemiological considerations of rodent community composition in fragmented landscapes in Panama. J Mammal 89: 684690.
    [Google Scholar]
  42. Gottdenker NL, Chaves LF, Calzada JE, Saldaña A, Carroll CR, 2012. Host Life history strategy, species diversity, and habitat influence Trypanosoma cruzi vector infection in changing landscapes. PLoS Negl Trop Dis 6: 57.
    [Google Scholar]
  43. Erazo D, Cordovez J, Cabrera C, Calzada JE, Saldana A, Gottdenker NL, 2017. Modelling the influence of host community composition in a sylvatic Trypanosoma cruzi system. Parasitology 144: 18811889.
    [Google Scholar]
  44. Cohen JE, Gürtler RE, 2001. Modeling household transmission of American trypanosomiasis. Science 293: 694698.
    [Google Scholar]
  45. Mejía-Jaramillo AM, Agudelo-Uribe LA, Dib JC, Ortiz S, Solari A, Triana-Chávez O, 2014. Genotyping of Trypanosoma cruzi in a hyper-endemic area of Colombia reveals an overlap among domestic and sylvatic cycles of Chagas disease. Parasit Vectors 7: 108.
    [Google Scholar]
  46. Cantillo-Barraza O, Garcés E, Gómez-Palacio A, Cortés LA, Pereira A, Marcet PL, Jansen AM, Triana-Chávez O, 2015. Eco-epidemiological study of an endemic Chagas disease region in northern Colombia reveals the importance of Triatoma maculata (Hemiptera: Reduviidae), dogs and Didelphis marsupialis in Trypanosoma cruzi maintenance. Parasit Vectors 8: 482.
    [Google Scholar]
  47. Ramírez JD, Turriago B, Tapia-Calle G, Guhl F, 2013. Understanding the role of dogs (Canis lupus familiaris) in the transmission dynamics of Trypanosoma cruzi genotypes in Colombia. Vet Parasitol 196: 216219.
    [Google Scholar]
  48. Angulo-Silva VM, Castellanos-Domínguez YZ, Flórez-Martínez M, Esteban-Adarme L, Pérez-Mancipe W, Farfán-García AE, Luna-Marín KP, 2016. Human trypanosomiasis in the eastern plains of Colombia: new transmission scenario. Am J Trop Med Hyg 94: 348351.
    [Google Scholar]
  49. Pena-García VH, Gómez-Palacio AM, Triana-Chávez O, Mejía-Jaramillo AM, 2014. Eco-epidemiology of chagas disease in an endemic area of Colombia: risk factor estimation, Trypanosoma cruzi characterization and identification of blood-meal sources in bugs. Am J Trop Med Hyg 91: 11161124.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.19-0331
Loading
/content/journals/10.4269/ajtmh.19-0331
Loading

Data & Media loading...

Supplemental material

  • Received : 29 Apr 2019
  • Accepted : 06 Nov 2019
  • Published online : 26 May 2020
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error