1921
Volume 101, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

National border areas are special places for the spread of (MTB). These regions concentrate vulnerable populations and constant population movements. Understanding the dynamics of the transmission of MTB is fundamental to propose control measures and to monitor drug resistance. We conducted a population-based prospective study of tuberculosis (TB) to evaluate molecular characteristics of MTB isolates circulating in Roraima, a state on the border of Venezuela and Guyana. Eighty isolates were genotyped by IS-RFLP (restriction fragment length polymorphism), spoligotyping, and 24-locus mycobacterial interspersed repetitive unit-variable number of repeats tandem (MIRU-VNTR). Drug susceptibility tests were performed by using the proportion method and GeneXpert MTB/RIF (Cepheid, Sunnyvale, CA). Isolates showing a phenotypic resistance profile were submitted to polymerase chain reaction (PCR) and sequencing. Spoligotyping showed 40 distinct patterns with a high prevalence of Latin-American and Mediterranean (LAM), Haarlem (H), and the “ill-defined” T clades. Mycobacterial interspersed repetitive unit -VNTR and IS-RFLP showed clustering rates of 21.3% and 30%, respectively. Drug resistance was detected in 11 (15.1%) isolates, and all were found to have primary resistance; among these, six (8.2%) isolates were streptomycin mono-resistant, four (5.4%) isoniazid mono-resistant, and one (1.3%) multidrug resistant. This is the first study on the molecular epidemiology and drug resistance profile of MTB from Roraima. Herein, we describe high diversity of genetic profiles circulating in this region that may be driven by the introduction of new strain types because of large population flow in this region. In summary, our results showed that analyses of these circulating strains can contribute to a better understanding of TB epidemiology in the northern Brazilian border and be useful to establish public health policies on TB prevention.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.19-0324
2019-08-06
2020-09-26
Loading full text...

Full text loading...

/deliver/fulltext/14761645/101/4/tpmd190324.html?itemId=/content/journals/10.4269/ajtmh.19-0324&mimeType=html&fmt=ahah

References

  1. Rendon A, Centis R, Zellweger JP, Solovic I, Torres-Duque C, Cordeiro CR, de Queiroz Mello F, Manissero D, Sotgiu G, 2018. Migration, TB control and elimination: whom to screen and treat. Pulmonology 24: 99105.
    [Google Scholar]
  2. IBGE, 2018. Censo Demográfico 2018: Características da População. Available at: https://cidades.ibge.gov.br/brasil/rr/panorama. Accessed December 19, 2018.
    [Google Scholar]
  3. Saúde Md, 2017. Indicadores prioritários para o monitoramento do Plano Nacional pelo Fim da Tuberculose como Problema de Saúde Pública no Brazil. Boletim Epidemiológico 48: 111.
    [Google Scholar]
  4. CIR, 2018. Atuação do Conselho Indígena de Roraima. Available at: http://www.cir.org.br/site/?page_id=158. Accessed December 10, 2018.
    [Google Scholar]
  5. Belo EN, Orellana JD, Levino A, Basta PC, 2013. Tuberculosis in Amazonian municipalities of the Brazil-Colombia-Peru-Venezuela border: epidemiological situation and risk factors associated with treatment default [article in Portuguese]. Rev Panam Salud Publica 34: 321329.
    [Google Scholar]
  6. Correia Sacchi FP et al., 2018. Genetic clustering of tuberculosis in an indigenous community of Brazil. Am J Trop Med Hyg 98: 372375.
    [Google Scholar]
  7. Machado LNC, Marcondes NR, Leite CQF, Santos ACB, Pavan FR, Baldin VP, Castilho AL, Siqueira VLD, Baeza LC, Berghs H, 2014. First baseline of circulating genotypic lineages of Mycobacterium tuberculosis in patients from the Brazilian borders with Argentina and Paraguay. PLoS One 9: e107106.
    [Google Scholar]
  8. Marques M, Cunha EAT, Evangelista M, Basta PC, Marques AMC, Croda J, 2017. Antituberculosis-drug resistance in the border of Brazil with Paraguay and Bolivia [Article in Portuguese]. Rev Panam Salud Publica 41: e9.
    [Google Scholar]
  9. WHO, 2017. Global Tuberculosis Report 2017. Geneva, Switzerland: World Health Organization.
    [Google Scholar]
  10. Coelho AGV, Zamarioli LA, Reis CMPV, de Lima Duca BF, 2007. Avaliação do crescimento em cordas na identificação presuntiva do complexo Mycobacterium tuberculosis. J Brasileiro Pneumologia 33: 707711.
    [Google Scholar]
  11. Giampaglia CMS, Martins MC, Chimara E, Oliveira RS, Vieira GBdO, Marsico AG, Mello FCQ, Fonseca LdS, Kritski A, Telles MAdS, 2007. Diferenciação entre Mycobacterium tuberculosis e outras Micobactérias com ácido ρ-nitrobenzóico utilizando o sistema MGIT960 Int J Tuberc Lung Dis 11: 803807.
    [Google Scholar]
  12. Arora J, Kumar G, Verma AK, Bhalla M, Sarin R, Myneedu VP, 2015. Utility of MPT64 antigen detection for rapid confirmation of Mycobacterium tuberculosis complex. J Glob Infect Dis 7: 6669.
    [Google Scholar]
  13. Ministério da Saúde, Secretaria de Vigilância em Saúde, Departamento de Vigilância Epidemiológica, Brazil, 2008. Manual Nacional de Vigilância Laboratorial da Tuberculose e Outras Micobactérias. Brasilia, Brazil: Ministério da Saúde.
    [Google Scholar]
  14. Maningi NE, Daum LT, Rodriguez JD, Said HM, Peters RPH, Sekyere JO, Fischer GW, Chambers JP, Fourie PB, 2018. Multi- and extensively drug resistant Mycobacterium tuberculosis in South Africa: a molecular analysis of historical isolates. J Clin Microbiol 56: e01214e012117.
    [Google Scholar]
  15. Boehme CC, Nabeta P, Hillemann D, Nicol MP, Shenai S, Krapp F, Allen J, Tahirli R, Blakemore R, Rustomjee R, 2010. Rapid molecular detection of tuberculosis and rifampin resistance. New Engl J Med 363: 10051015.
    [Google Scholar]
  16. Van Embden J, Cave MD, Crawford JT, Dale J, Eisenach K, Gicquel B, Hermans P, Martin C, McAdam R, Shinnick T, 1993. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol 31: 406409.
    [Google Scholar]
  17. Kamerbeek J, Schouls L, Kolk A, Van Agterveld M, Van Soolingen D, Kuijper S, Bunschoten A, Molhuizen H, Shaw R, Goyal M, 1997. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35: 907914.
    [Google Scholar]
  18. Supply P, Mazars E, Lesjean S, Vincent V, Gicquel B, Locht C, 2000. Variable human minisatellite‐like regions in the Mycobacterium tuberculosis genome. Mol Microbiol 36: 762771.
    [Google Scholar]
  19. Brudey K, Driscoll JR, Rigouts L, Prodinger WM, Gori A, Al-Hajoj SA, Allix C, Aristimuño L, Arora J, Baumanis V, 2006. Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol 6: 23.
    [Google Scholar]
  20. Demay C, Liens B, Burguière T, Hill V, Couvin D, Millet J, Mokrousov I, Sola C, Zozio T, Rastogi N, 2012. SITVITWEB–a publicly available international multimarker database for studying Mycobacterium tuberculosis genetic diversity and molecular epidemiology. Infect Genet Evol 12: 755766.
    [Google Scholar]
  21. Vitol I, Driscoll J, Kreiswirth B, Kurepina N, Bennett KP, 2006. Identifying Mycobacterium tuberculosis complex strain families using spoligotypes. Infect Genet Evol 6: 491504.
    [Google Scholar]
  22. Supply P, Allix C, Lesjean S, Cardoso-Oelemann M, Rüsch-Gerdes S, Willery E, Savine E, de Haas P, van Deutekom H, Roring S, 2006. Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J Clin Microbiol 44: 44984510.
    [Google Scholar]
  23. Peres RL et al., 2018. Risk factors associated with cluster size of Mycobacterium tuberculosis (Mtb) of different RFLP lineages in Brazil. BMC Infect Dis 18: 71.
    [Google Scholar]
  24. Dantas NGT, Suffys PN, da Silva Carvalho W, Gomes HM, De Almeida IN, De Assis LJ, Augusto CJ, Gomgnimbou MK, Refregier G, Sola C, 2015. Genetic diversity and molecular epidemiology of multidrug-resistant Mycobacterium tuberculosis in Minas Gerais state, Brazil. BMC Infect Dis 15: 306.
    [Google Scholar]
  25. Ribeiro FKC, Pan W, Bertolde A, Vinhas SA, Peres RL, Riley L, Palaci M, Maciel EL, 2015. Genotypic and spatial analysis of Mycobacterium tuberculosis transmission in a high-incidence urban setting. Clin Infect Dis 61: 758766.
    [Google Scholar]
  26. de Mello SB, Silva BCN, 2005. Roraima: problemas de desenvolvimento sustentável em uma região de fronteira. Redes 10: 129149.
    [Google Scholar]
  27. Fraser B, Willer H, 2016. Venezuela: aid needed to ease health crisis. Lancet 388: 947949.
    [Google Scholar]
  28. Benedetti MSG, 2018. Relatório Anual de Epidemiologia de Roraima 2017. Boa Vista, Brazil: Secretaria de Saúde do Estado de Roraíma, Governo do Estado de Roraíma.
    [Google Scholar]
  29. Lagos J, Couvin D, Arata L, Tognarelli J, Aguayo C, Leiva T, Arias F, Hormazabal JC, Rastogi N, Fernandez J, 2016. Analysis of Mycobacterium tuberculosis genotypic lineage distribution in Chile and neighboring countries. PLoS One 11: e0160434.
    [Google Scholar]
  30. Abadia E et al., 2009. Mycobacterium tuberculosis ecology in Venezuela: epidemiologic correlates of common spoligotypes and a large clonal cluster defined by MIRU-VNTR-24. BMC Infect Dis 9: 122.
    [Google Scholar]
  31. Candia N, Lopez B, Zozio T, Carrivale M, Diaz C, Russomando G, de Romero NJ, Jara JC, Barrera L, Rastogi N, 2007. First insight into Mycobacterium tuberculosis genetic diversity in Paraguay. BMC Microbiol 7: 75.
    [Google Scholar]
  32. Mokrousov I, Vyazovaya A, Narvskaya O, 2014. Mycobacterium tuberculosis Latin American-Mediterranean family and its sublineages in the light of robust evolutionary markers. J Bacteriol 196: 18331841.
    [Google Scholar]
  33. Furlaneto IP, Conceição EC, Brito MLd, Costa ARFd, Monteiro JJB, Gonçalves NV, Gomes HM, Lima KVB, 2013. Genotipagem por spoligotyping de Mycobacterium tuberculosis obtidos de lâminas de Ziehl-Neelsen em Belém, estado do Pará, Brasil. Revista Pan-Amazônica de Saúde 4: 3341.
    [Google Scholar]
  34. Gomes HM et al., 2012. Spoligotypes of Mycobacterium tuberculosis complex isolates from patients residents of 11 states of Brazil. Infect Genet Evol 12: 649656.
    [Google Scholar]
  35. Banuls AL, Sanou A, Anh NT, Godreuil S, 2015. Mycobacterium tuberculosis: ecology and evolution of a human bacterium. J Med Microbiol 64: 12611269.
    [Google Scholar]
  36. Malacarne J, Kolte IV, Freitas LP, Orellana JDY, Souza MLP, Souza-Santos R, Basta PC, 2018. Factors associated with TB in an indigenous population in Brazil: the effect of a cash transfer program. Rev Inst Med Trop Sao Paulo 60: e63.
    [Google Scholar]
  37. Rodrigues HAdN, Barden JE, da Silva Laroque LF, 2016. A geografia da tuberculose em Roraima. Hygeia 12: 3849.
    [Google Scholar]
  38. Wang Q, Lau SKP, Liu F, Zhao Y, Li HM, Li BX, Hu YL, Woo PCY, Liu CH, 2014. Molecular epidemiology and clinical characteristics of drug-resistant Mycobacterium tuberculosis in a tuberculosis referral hospital in China. PLoS One 9: e110209.
    [Google Scholar]
  39. Molodtsov V, Scharf NT, Stefan MA, Garcia GA, Murakami KS, 2017. Structural basis for rifamycin resistance of bacterial RNA polymerase by the three most clinically important RpoB mutations found in Mycobacterium tuberculosis. Mol Microbiol 103: 10341045.
    [Google Scholar]
  40. Lempens P, Meehan CJ, Vandelannoote K, Fissette K, de Rijk P, Van Deun A, Rigouts L, de Jong BC, 2018. Isoniazid resistance levels of Mycobacterium tuberculosis can largely be predicted by high-confidence resistance-conferring mutations. Sci Rep 8: 3246.
    [Google Scholar]
  41. Kandler JL, Mercante AD, Dalton TL, Ezewudo MN, Cowan LS, Burns SP, Metchock B, Cegielski P, Posey JE, 2018. Validation of novel Mycobacterium tuberculosis isoniazid resistance mutations not detectable by common molecular tests. Antimicrob Agents Chemother 62: e0097418.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.19-0324
Loading
/content/journals/10.4269/ajtmh.19-0324
Loading

Data & Media loading...

Supplemental Materials

  • Received : 27 Apr 2019
  • Accepted : 29 Jun 2019
  • Published online : 06 Aug 2019
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error