Volume 101, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Zika virus (ZIKV) serological diagnostics are compromised in areas where dengue viruses (DENV) co-circulate because of their high levels of protein sequence homology. Here, we describe the characterization of a Zika blockade-of-binding ELISA (Zika BOB) and a Zika microneutralization assay (Zika MN) for the detection of ZIKV nonstructural protein 1 (NS1)–specific antibodies and ZIKV neutralizing antibodies, respectively. Zika BOB and Zika MN cutoffs were established as 10 and 100 endpoint titers, respectively, using samples collected pre- and post-virologically confirmed ZIKV infection from subjects living in DENV-endemic areas. Specificity of the assays was equally high, whereas sensitivity of Zika BOB was lower than that of Zika MN, especially in samples collected > 6 months post-infection. Immunosurveillance analysis, using combined results from both Zika BOB and Zika MN, carried out also in DENV-endemic regions in Colombia, Honduras, Mexico, and Puerto Rico before (2013–2014) and after (2017–2018) ZIKV introduction in the Americas suggests unapparent ZIKV seroprevalence rates ranged from 25% to 80% over the specified period of time in the regions investigated.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Faria NR, 2016. Zika virus in the Americas: early epidemiological and genetic findings. Science 352: 345349. [Google Scholar]
  2. Rodriguez-Barraquer I, 2019. Impact of preexisting dengue immunity on Zika virus emergence in a dengue endemic region. Science 363: 607610. [Google Scholar]
  3. Lowe R, Barcellos C, Brasil P, Cruz OG, Honorio NA, Kuper H, Carvalho MS, , 2018. The Zika virus epidemic in Brazil: from discovery to future implications. Int J Environ Res Public Health 15: E96. [Google Scholar]
  4. Brooks T, Roy-Burman A, Tuholske C, Busch MP, Bakkour S, Stone M, Linnen JM, Gao K, Coleman J, Bloch EM, , 2017. Real-time evolution of Zika virus disease outbreak, Roatan, Honduras. Emerg Infect Dis 23: 13601363. [Google Scholar]
  5. Diaz-Quinonez JA, Lopez-Martinez I, Torres-Longoria B, Vazquez-Pichardo M, Cruz-Ramirez E, Ramirez-Gonzalez JE, Ruiz-Matus C, Kuri-Morales P, , 2016. Evidence of the presence of the Zika virus in Mexico since early 2015. Virus Genes 52: 855857. [Google Scholar]
  6. Tolosa N, 2017. Zika virus disease in children in Colombia, August 2015 to May 2016. Paediatr Perinat Epidemiol 31: 537545. [Google Scholar]
  7. Li H, Saucedo-Cuevas L, Shresta S, Gleeson JG, , 2016. The neurobiology of Zika virus. Neuron 92: 949958. [Google Scholar]
  8. Kindhauser MK, Allen T, Frank V, Santhana RS, Dye C, , 2016. Zika: the origin and spread of a mosquito-borne virus. Bull World Health Organ 94: 675686C. [Google Scholar]
  9. Microcephaly Epidemic Research Group, 2016. Microcephaly in infants, Pernambuco state, Brazil, 2015. Emerg Infect Dis 22: 10901093. [Google Scholar]
  10. Ekins S, Liebler J, Neves BJ, Lewis WG, Coffee M, Bienstock R, Southan C, Andrade CH, , 2016. Illustrating and homology modeling the proteins of the Zika virus. F1000Res 5: 275. [Google Scholar]
  11. Vogels CBF, Ruckert C, Cavany SM, Perkins TA, Ebel GD, Grubaugh ND, , 2019. Arbovirus coinfection and co-transmission: a neglected public health concern? PLoS Biol 17: e3000130. [Google Scholar]
  12. Castanha PMS, Nascimento EJM, Braga C, Cordeiro MT, de Carvalho OV, de Mendonca LR, Azevedo EAN, Franca RFO, Dhalia R, Marques ETA, , 2017. Dengue virus-specific antibodies enhance Brazilian Zika virus infection. J Infect Dis 215: 781785. [Google Scholar]
  13. Priyamvada L, 2016. Human antibody responses after dengue virus infection are highly cross-reactive to Zika virus. Proc Natl Acad Sci USA 113: 78527857. [Google Scholar]
  14. Sariol CA, Nogueira ML, Vasilakis N, , 2017. A tale of two viruses: does heterologous flavivirus immunity enhance Zika disease? Trends Microbiol 26: 186190. [Google Scholar]
  15. Terzian ACB, 2017. Viral load and cytokine response profile does not support antibody-dependent enhancement in dengue-primed Zika virus-infected patients. Clin Infect Dis 65: 12601265. [Google Scholar]
  16. Dasgupta S, 2016. Patterns in Zika virus testing and infection, by report of symptoms and pregnancy status–United States, January 3–March 5, 2016. MMWR Morb Mortal Wkly Rep 65: 395399. [Google Scholar]
  17. Waggoner JJ, Pinsky BA, , 2016. Zika virus: diagnostics for an emerging pandemic threat. J Clin Microbiol 54: 860867. [Google Scholar]
  18. Priyamvada L, Suthar MS, Ahmed R, Wrammert J, , 2017. Humoral immune responses against Zika virus infection and the importance of preexisting flavivirus immunity. J Infect Dis 216: S906S911. [Google Scholar]
  19. Balmaseda A, 2017. Antibody-based assay discriminates Zika virus infection from other flaviviruses. Proc Natl Acad Sci USA 114: 83848389. [Google Scholar]
  20. Nascimento EJM, George JK, Velasco M, Bonaparte MI, Zheng L, DiazGranado C, Marques ETA, Huleatt JW, , 2018. Development of an anti-NS1 IgG ELISA to evaluate exposure to dengue virus J Virol Methods 257: 4857. [Google Scholar]
  21. Duffy MR, 2009. Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med 360: 25362543. [Google Scholar]
  22. Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ, Johnson AJ, Stanfield SM, Duffy MR, , 2008. Genetic and serologic properties of Zika virus associated with an epidemic, Yap state, Micronesia, 2007. Emerg Infect Dis 14: 12321239. [Google Scholar]
  23. Montoya M, 2018. Longitudinal analysis of antibody cross-neutralization following Zika virus and dengue virus infection in Asia and the Americas. J Infect Dis 218: 536545. [Google Scholar]
  24. Taketa-Graham M, Powell Pereira JL, Baylis E, Cossen C, Oceguera L, Patiris P, Chiles R, Hanson CV, Forghani B, , 2010. High throughput quantitative colorimetric microneutralization assay for the confirmation and differentiation of West Nile virus and St. Louis encephalitis virus. Am J Trop Med Hyg 82: 501504. [Google Scholar]
  25. Stettler K, 2016. Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection. Science 353: 823826. [Google Scholar]
  26. Chen Y, Zhao Q, Liu B, Wang L, Sun Y, Li H, Wang X, Syed SF, Zhang G, Zhou EM, , 2016. A novel blocking ELISA for detection of antibodies against hepatitis E virus in domestic pigs. PLoS One 11: e0152639. [Google Scholar]
  27. Schuster I, 2016. A competitive ELISA for species-independent detection of crimean-congo hemorrhagic fever virus specific antibodies. Antivir Res 134: 161166. [Google Scholar]
  28. Yang M, Xu W, Bittner H, Horsington J, Vosloo W, Goolia M, Lusansky D, Nfon C, , 2016. Generation of mAbs to foot-and-mouth disease virus serotype A and application in a competitive ELISA for serodiagnosis. Virol J 13: 195. [Google Scholar]
  29. Afshar A, Thomas FC, Wright PF, Shapiro JL, Shettigara PT, Anderson J, , 1987. Comparison of competitive and indirect enzyme-linked immunosorbent assays for detection of bluetongue virus antibodies in serum and whole blood. J Clin Microbiol 25: 17051710. [Google Scholar]
  30. Lelli D, Moreno A, Brocchi E, Sozzi E, Capucci L, Canelli E, Barbieri I, Zeller H, Cordioli P, , 2012. West Nile virus: characterization and diagnostic applications of monoclonal antibodies. Virol J 9: 81. [Google Scholar]
  31. Guideline IHT, , 2005. ICH harmonised tripartite guideline-validation of analytical procedures: text and methodology Q2(R1). Geneva, Switzerland: International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. [Google Scholar]
  32. Boaz M, Janosczyk H, Garg S, Garg S, Yost S, Hildreth SW, Dayan GH, Starr-Spires L, , 2014. Virological confirmation of suspected dengue in a Phase 2 Latin American vaccine trial: implications for vaccine efficacy evaluation. TrialsVaccinol 3: 127133. [Google Scholar]
  33. Nascimento EJM, Huleatt JW, Cordeiro MT, Castanha PMS, George JK, Grebe E, Welte A, Brown M, Burke DS, Marques ETA, , 2018. Development of antibody biomarkers of long term and recent dengue virus infections. J Virol Methods 257: 6268. [Google Scholar]
  34. Wu Y, 2017. Neutralization of Zika virus by germline-like human monoclonal antibodies targeting cryptic epitopes on envelope domain III. Emerg Microbes Infect 6: e89. [Google Scholar]
  35. Cruz-Pacheco G, Esteva L, Vargas C, , 2014. Vaccination strategies for SIR vector-transmitted diseases. Bull Math Biol 76: 20732090. [Google Scholar]
  36. Ramos-Castaneda J, Barreto Dos Santos F, Martinez-Vega R, Galvao de Araujo JM, Joint G, Sarti E, , 2017. Dengue in Latin America: systematic review of molecular epidemiological trends. PLoS Negl Trop Dis 11: e0005224. [Google Scholar]
  37. PAHO, 2015. Dengue Incidence in the Americas, 2014. Available at: http://www.paho.org/hq/images/stories/AD/HSD/CD/Dengue/2014-cha-distribution-virus-dengue-53.jpg. Accessed May 31, 2019. [Google Scholar]
  38. Perez F, 2019. The decline of dengue in the Americas in 2017: discussion of multiple hypotheses. Trop Med Int Health 24: 442453. [Google Scholar]
  39. PAHO, 2017. Regional Zika Epidemiological Update (Americas) August 25, 2017. Available at: https://www.paho.org/hq/index.php?option=com_content&view=article&id=11599:regional-zika-epidemiological-update-americas&Itemid=41691&lang=en. Accessed May 31, 2019. [Google Scholar]
  40. Zhang Q, 2017. Spread of Zika virus in the Americas. Proc Natl Acad Sci USA 114: E4334E4343. [Google Scholar]
  41. PAHO, WHO, 2018. Epidemiological Alert: Dengue. Available at: https://www.paho.org/hq/index.php?option=com_docman&view=download&category_slug=dengue-2217&alias=47044-21-november-2018-dengue-epidemiological-alert&Itemid=270&lang=en. Accessed May 31, 2019. [Google Scholar]
  42. Pierson-Perry JF, Vaks JE, Durham AP, Fischer C, Gutenbrunner C, Hillyard D, Kondratovich MK, Ladwig P, Middleberg RA, , 2012. Protocols for Determination of Limits of Detection and Limits of Quantitation EP17-A2 Evaluation of Detection Capability for Clinical Laboratory Measurement Procedures; Approved Guideline-Second Edition. Clinical and Laboratory Standards Institute. [Google Scholar]

Data & Media loading...

Supplemental information, table, and figures

  • Received : 08 Apr 2019
  • Accepted : 15 Jun 2019
  • Published online : 06 Aug 2019

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error