1921
Volume 101, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

serovar Infantis is causing an increasing number of infections worldwide. Our aim was to describe the characteristics of serovar Infantis among patients attended in a hospital of Lima, Peru. Fifty cases of salmonellosis were seen during October 2015–May 2017; Infantis was detected in 36% ( = 18) of them, displacing Enteritidis and Typhimurium ( = 13, 26%, each). Seventeen cases caused by Infantis were presented as diarrheal illnesses; only one extraintestinal case (bacteremia) was seen in a 1-year-old infant. This serovar is resistant to multiple groups of antimicrobials, showing only fully susceptibility to carbapenems. Compared with Infantis, other serovars analyzed (mainly Enteritidis and Typhimurium) showed a lower frequency of resistance to antimicrobials such as trimethoprim–sulfamethoxazole, ampicillin, and chloramphenicol. The antibiotic with the highest frequency of resistance was ciprofloxacin. Further studies are needed to evaluate the routes of transmission and measures of control of this multidrug-resistant

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.19-0213
2019-08-05
2020-09-26
Loading full text...

Full text loading...

/deliver/fulltext/14761645/101/4/tpmd190213.html?itemId=/content/journals/10.4269/ajtmh.19-0213&mimeType=html&fmt=ahah

References

  1. Ao TT, Feasey NA, Gordon MA, Keddy KH, Angulo FJ, Crump JA, 2015. Global burden of invasive nontyphoidal Salmonella disease, 2010. Emerg Infect Dis 21: 941949.
    [Google Scholar]
  2. Silva C et al., 2017. Characterization of Salmonella enterica isolates causing bacteremia in Lima, Peru, using multiple typing methods. PLoS One 12: e0189946.
    [Google Scholar]
  3. Kuang D, 2018. Increase in ceftriaxone resistance and widespread extended-spectrum β-lactamases genes among Salmonella enterica from human and nonhuman sources. Foodborne Pathog Dis 15: 770775.
    [Google Scholar]
  4. Fernandes SA, Camargo CH, Francisco GR, Bueno MFC, Garcia DO, Doi Y, Casas MRT, 2016. Prevalence of extended-spectrum β-lactamases CTX-M-8 and CTX-M-2-producing Salmonella serotypes from clinical and nonhuman isolates in Brazil. Microb Drug Resist 23: 580589.
    [Google Scholar]
  5. Cartelle Gestal M, Zurita J, Paz y Mino A, Ortega-Paredes D, Alcocer I, 2016. Characterization of a small outbreak of Salmonella enterica serovar Infantis that harbour CTX-M-65 in Ecuador. Braz J Infect Dis 20: 406407.
    [Google Scholar]
  6. Zamudio ML, Meza A, Bailón H, Martinez-Urtaza J, Campos J, 2011. Experiencias en la vigilancia epidemiológica de agentes patógenos transmitidos por alimentos a través de electroforésis en campo pulsado (PFGE) en el Perú. Rev Peru Med Exp Salud Publica 28: 128135.
    [Google Scholar]
  7. Clinical and Laboratory Standards Institute, 2016. Performance Standards for Antimicrobial Susceptibility Testing. Twenty Sixth Informational Supplement. M100-S26. Wayne, PA: CLSI.
    [Google Scholar]
  8. Belaaouaj A, Lapoumeroulie C, Caniça MM, Vedel G, Névot P, Krishnamoorthy R, Paul G, 1994. Nucleotide sequences of the genes coding for the TEM-like/3-lactamases IRT-1 and IRT-2 (formerly called TRI-1 and TRI-2). FEMS Microbiol Lett 120: 7580.
    [Google Scholar]
  9. Batchelor M, Hopkins K, Threlfall EJ, Stallwood AD, Davies RH, Liebana E, 2005. blaCTX-M genes in clinical Salmonella isolates recovered from humans in England and Wales from 1992 to 2003. Antimicrob Agents Chemother 49: 13191322.
    [Google Scholar]
  10. Pitout JD, Thomson KS, Hanson ND, Ehrhardt AF, Moland ES, Sanders CC, 1998. Beta-lactamases responsible for resistance to expanded-spectrum cephalosporins in Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis isolates recovered in South Africa. Antimicrob Agents Chemother 42: 13501354.
    [Google Scholar]
  11. Iriarte A et al., 2017. Draft genome sequence of Salmonella enterica subsp. enterica serovar Infantis Strain SPE101, isolated from a chronic human infection. Genome Announc 5: e00679e00717.
    [Google Scholar]
  12. Colquechagua F, Sevillano C, Gonzales E, 2015. Enterobacterias productoras de betalactamasas de espectro extendido en muestras fecales en el Instituto Nacional de Salud del Niño, Perú. Rev Peru Med Exp Salud Publica 32: 2632.
    [Google Scholar]
  13. Antunes P, Mourão J, Campos J, Peixe L, 2016. Salmonellosis: the role of poultry meat. Clin Microbiol Infect 22: 110121.
    [Google Scholar]
  14. Nógrády N, Tóth Á, Kostyák Á, Pászti J, Nagy B, 2007. Emergence of multidrug-resistant clones of Salmonella Infantis in broiler chickens and humans in Hungary. J Antimicrob Chemother 60: 645648.
    [Google Scholar]
  15. Marder Mph EP et al., 2018. Preliminary incidence and trends of infections with pathogens transmitted commonly through food–foodborne diseases active surveillance network, 10 U.S. sites, 2006–2017. MMWR Morb Mortal Wkly Rep 67: 324328.
    [Google Scholar]
  16. Brown AC, Chen JC, Watkins LKF, Campbell D, Folster JP, Tate H, Wasilenko J, Van Tubbergen C, Friedman CR, 2018. CTX-M-65 extended-spectrum β-lactamase-producing Salmonella enterica serotype Infantis, United States. Emerg Infect Dis 24:22842291.
    [Google Scholar]
  17. Granda A, Riveros M, Martínez-Puchol S, Ocampo K, Laureano-Adame L, Corujo A, Reyes I, Ruiz J, Ochoa TJ, 2019. Presence of extended-spectrum β-lactamase, CTX-M-65 in Salmonella enterica serovar Infantis isolated from children with diarrhea in Lima, Peru. Pediatr Infect Dis J. DOI: 10.1055/s-0039-1685502.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.19-0213
Loading
/content/journals/10.4269/ajtmh.19-0213
Loading

Data & Media loading...

  • Received : 16 Mar 2019
  • Accepted : 09 Jun 2019
  • Published online : 05 Aug 2019
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error