Volume 101, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



In addition to the direct effect of insecticide-treated nets (ITNs), there has been evidence for spatial indirect effects. Spatial analyses in cluster randomized trials (CRTs) are rare, but a large-scale CRT from 1993 was one of the first to conduct a spatial analysis of ITNs in CRTs. We revisit these data by applying a broader range of contemporary spatial methods to further explore spatial spillover. We conducted three analyses: 1) exploratory spatial analysis, considering spatial patterns and spillover in the data; 2) spatial modeling, estimating the intervention effect considering spatial effects; and 3) analysis of distance-based spillover and interaction with the intervention, characterizing the functional distance over which the spillover effect was present. There were consistent indications of spatial patterns from the exploratory analysis. Bed nets were associated with a 17% reduction in all-cause mortality for children aged 6–59 months, and the intervention estimate remained robust when allowing for the spatial structure of the data. There was strong evidence of a spatial spillover effect: for every additional 100 m that a control household was from an intervention household (and vice versa), the standardized mortality ratio (SMR) increased by 1.7% (SMR 1.017, 95% credible interval 1.006–1.026). Despite evidence of a spatial spillover effect, the conclusions of the trial remain unaffected by spatial model specifications. Use of ITNs was clearly beneficial for individuals, and there was compelling evidence that they provide an indirect benefit to individuals living nearby. This article demonstrates the extra utility that spatial methods can provide when analyzing a CRT.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Habluetzel A, Diallo DA, Esposito F, Lamizana L, Pagnoni F, Lengeler C, Traore C, Cousens SN, , 1997. Do insecticide-treated curtains reduce all-cause child mortality in Burkina Faso? Trop Med Int Health 2: 855862. [Google Scholar]
  2. D’Alessandro U, 1995. Mortality and morbidity from malaria in Gambian children after introduction of an impregnated bednet programme. Lancet 345: 479483. [Google Scholar]
  3. Binka FN, Kubaje A, Adjuik M, Williams LA, Lengeler C, Maude GH, Armah GE, Kajihara B, Adiamah JH, Smith PG, , 1996. Impact of permethrin impregnated bednets on child mortality in Kassena-Nankana district, Ghana: a randomized controlled trial. Trop Med Int Health 1: 147154. [Google Scholar]
  4. Nevill CG, Some ES, Mung’ala VO, Mutemi W, New L, Marsh K, Lengeler C, Snow RW, , 1996. Insecticide-treated bednets reduce mortality and severe morbidity from malaria among children on the Kenyan coast. Trop Med Int Health 1: 139146. [Google Scholar]
  5. Hawley WA, 2003. Community-wide effects of permethrin-treated bed nets on child mortality and malaria morbidity in western Kenya. Am J Trop Med Hyg 68: 121127. [Google Scholar]
  6. Lengeler C, , 2004. Insecticide-treated bed nets and curtains for preventing malaria. Cochrane Database Syst Rev 2: CD000363. [Google Scholar]
  7. Gosoniu L, Vounatsou P, Tami A, Nathan R, Grundmann H, Lengeler C, , 2008. Spatial effects of mosquito bednets on child mortality. BMC Public Health 8: 356. [Google Scholar]
  8. Hightower AW, Ombok M, Otieno R, Odhiambo R, Oloo AJ, Lal AA, Nahlen BL, Hawley WA, , 1998. A geographic information system applied to a malaria field study in western Kenya. Am J Trop Med Hyg 58: 266272. [Google Scholar]
  9. Binka FN, Indome F, Smith T, , 1998. Impact of spatial distribution of permethrin-impregnated bed nets on child mortality in rural northern Ghana. Am J Trop Med Hyg 59: 8085. [Google Scholar]
  10. Jarvis C, Di Tanna GL, Lewis D, Alexander N, Edmunds WJ, , 2017. Spatial analysis of cluster randomised trials: a systematic review of analysis methods. Emerg Themes Epidemiol 14: 12. [Google Scholar]
  11. Gimnig JE, Kolczak MS, Hightower AW, Vulule JM, Schoute E, Kamau L, Phillips-Howard PA, Ter Kuile FO, Nahlen BL, Hawley WA, , 2003. Effect of permethrin-treated bed nets on the spatial distribution of malaria vectors in western Kenya. Am J Trop Med Hyg 68: 115120. [Google Scholar]
  12. Howard SC, Omumbo J, Nevill C, Some ES, Donnelly CA, Snow RW, , 2000. Evidence for a mass community effect of insecticide-treated bednets on the incidence of malaria on the Kenyan coast. Trans R Soc Trop Med Hyg 94: 357360. [Google Scholar]
  13. Quinones ML, Lines J, Thomson MC, Jawara M, Greenwood BM, , 1998. Permethrin-treated bed nets do not have a ‘mass-killing effect’ on village populations of Anopheles gambiae s.l. in the Gambia. Trans R Soc Trop Med Hyg 92: 373378. [Google Scholar]
  14. Auchincloss AH, Gebreab SY, Mair C, Diez Roux AV, , 2012. A review of spatial methods in epidemiology, 2000–2010. Annu Rev Public Health 33: 107122. [Google Scholar]
  15. Gelfand A, Diggle P, Fuentes M, Guttorp P, , eds., 2010. Handbook of Spatial Statistics. Boca Raton, FL: CRC Press. [Google Scholar]
  16. QGIS Development Team, 2017. QGIS Geographic Information System. Available at: http://qgis.osgeo.org. [Google Scholar]
  17. R Core Team, 2017. R: A language and Environment for Statistical Computing. Available at: https://www.r-project.org/. [Google Scholar]
  18. R Core Team, 2017. Foreign: Read Data Stored by “Minitab”, “S”, “SAS”, “SPSS”, “Stata”, “Systat”, “Weka”, “dBase”. Available at: https://cran.r-project.org/package=foreign. [Google Scholar]
  19. Wickham H, Francois R, Henry L, Müller K, , 2017. Dplyr: A Grammar of Data Manipulation. Available at: https://cran.r-project.org/package=dplyr. [Google Scholar]
  20. Auguie B, , 2017. gridExtra: Miscellaneous Functions for “Grid” Graphics. Available at: https://cran.r-project.org/package=gridExtra. [Google Scholar]
  21. Bivand RS, Pebesma E, Gomez-Rubio V, , 2013. Applied Spatial Data Analysis with R, 2nd edition. New York, NY: Springer. [Google Scholar]
  22. Canty A, Ripley BD, , 2017. Boot: Bootstrap R (S-Plus) Functions. [Google Scholar]
  23. Dowle M, Srinivasan A, , 2017. Data.Table: Extension of ‘Data.Frame’. Available at: https://cran.r-project.org/package=data.table. [Google Scholar]
  24. Bivand R, Keitt T, Rowlingson B, , 2017. Rgdal: Bindings for the “Geospatial” Data Abstraction Library. Available at: https://cran.r-project.org/package=rgdal. [Google Scholar]
  25. Lindgren F, Rue H, , 2015. Bayesian spatial modelling with R–INLA. J Stat Softw 63: 125. [Google Scholar]
  26. Bates D, Mächler M, Bolker B, Walker S, , 2015. Fitting linear mixed-effects models using lme4. J Stat Softw 67: 148. [Google Scholar]
  27. McElreath R, , 2016. Rethinking: Statistical Rethinking Book Package. [Google Scholar]
  28. Gollini I, Lu B, Charlton M, Brunsdon C, Harris P, , 2015. GWmodel: an R package for exploring spatial heterogeneity using geographically weighted models. J Stat Softw 63: 150. [Google Scholar]
  29. Wickham H, , 2016. Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, Available at: http://ggplot2.org. [Google Scholar]
  30. Garnier S, , 2017. Viridis: Default Color Maps from “Matplotlib”. Available at: https://cran.r-project.org/package=viridis. [Google Scholar]
  31. Pebesma Esf, , 2017. Simple Features for R. Available at: https://cran.r-project.org/package=sf. [Google Scholar]
  32. Cliff AD, Ord JK, , 1981. Spatial Processes: Models & Applications. London, United Kingdom: Pion. [Google Scholar]
  33. Moran PA, , 1950. Notes on continuous stochastic Phenomena. Biometrika 37: 17. [Google Scholar]
  34. Brunsdon C, Fotheringham AS, Charlton ME, , 1996. Geographically weighted regression: a method for exploring spatial nonstationarity. Geogr Anal 28: 281298. [Google Scholar]
  35. Besag J, , 1974. Spatial interaction and the statistical analysis of lattice systems. J R Stat Soc Ser B 36: 192236. [Google Scholar]
  36. Cressie N, , 1991. Statistics for Spatial Data. New York, NY: John Wiley & Sons Ltd. [Google Scholar]
  37. Besag J, Kooperberg C, , 1995. On conditional and intrinsic autoregression. Biometrika 82: 733746. [Google Scholar]
  38. Besag J, York J, Mollié A, , 1991. Bayesian image restoration, with two applications in spatial statistics. Ann Inst Stat Math, 43: 120. [Google Scholar]
  39. Rasmussen CE, Williams CKI, , 2006. Gaussian Processes for Machine Learning . Cambridge, MA: MIT Press. [Google Scholar]
  40. Gelfand AE, Schliep EM, , 2016. Spatial statistics and Gaussian processes: a beautiful marriage. Spat Stat 18: 86104. [Google Scholar]
  41. Rue H, Held L, , 2005. Gaussian Markov Random Fields: Theory and Applications. London, United Kingdom: Chapman & Hall. [Google Scholar]
  42. Haran M, , 2011. Gaussian random field models for spatial data. Handbook of Markov Chain Monte Carlo. Boca Raton, FL: CRC Press, 449478. [Google Scholar]
  43. Lindgren F, Rue H, Lindström J, , 2011. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. J R Stat Soc Ser B 73: 423498. [Google Scholar]
  44. Simpson D, Lindgren F, Rue H, , 2012. In order to make spatial statistics computationally feasible, we need to forget about the covariance function. Environmetrics 23: 6574. [Google Scholar]
  45. Blangiardo M, Cameletti M, , 2015. Spatial and Spatio-Temporal Bayesian Models with R-INLA. Hoboken, NJ: Wiley. [Google Scholar]
  46. Rue H, Martino S, Chopin N, , 2009. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J R Stat Soc Ser B 71: 319392. [Google Scholar]
  47. Hayes RJ, Moulton LH, , 2017. Cluster Randomised Trials, 2nd edition. Boca Raton, FL: Chapman & Hall/CRC. [Google Scholar]
  48. de Smith MJ, Goodchild MF, Longley P, , 2015. Geospatial Analysis: A Comprehensive Guide to Principles, Techniques and Software Tools, 5th edition. London, United Kingdom: Winchelsea Press. [Google Scholar]
  49. Efron B, , 1979. Bootstrap methods: another look at the jackknife. Ann Stat 7: 126. [Google Scholar]
  50. Davison AC, Hinkley DV, , 1997. Bootstrap Methods and Their Applications. Cambridge, United Kingdom: Cambridge University Press. [Google Scholar]
  51. Greenland S, , 1983. Tests for interaction in epidemiologic studies: a review and a study of power. Stat Med 2: 243251. [Google Scholar]
  52. Silkey M, Homan T, Maire N, Hiscox A, Mukabana R, Takken W, Smith TA, , 2016. Design of trials for interrupting the transmission of endemic pathogens. Trials 17: 278. [Google Scholar]
  53. Giorgi E, Diggle PJ, van den Berg H, Terlouw DJ, Takken W, Chetwynd AG, McCann RS, , 2018. Reducing contamination risk in cluster-randomized infectious disease-intervention trials. Int J Epidemiol 47: 20152024. [Google Scholar]

Data & Media loading...

  • Received : 06 Feb 2019
  • Accepted : 02 Sep 2019
  • Published online : 07 Oct 2019

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error