1921
Volume 101, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Leishmaniasis is a vector-borne disease caused by protozoan parasites of the genus. In Australia, leishmaniasis is an imported disease that is presenting itself at increased rates because of international travel, the influx of immigrants, and deployment of military operations to endemic regions. Although species are morphologically indistinguishable, there is a strong correlation between some causative species of leishmaniasis and the subsequent response to the treatments available and patient outcome. Consequently, identification of the infective species is imperative as misidentification can result in the administering of an ineffective drug. The aim of this study was to develop a simple diagnostic tool with high sensitivity and specificity, which is capable of detecting the presence of the parasite and accurately differentiating the causative species in question. Using the advantageous properties of the maxi-circle kinetoplast DNA, a polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) targeting the gene was developed for the analysis of imported cases of human leishmaniasis in Australia. Designed as a dual analysis, concurrent PCR of maxi-circle DNA and digestion with two separate enzymes (III and CH4IV), this study provides an appraisal on 24 imported cases of leishmaniasis between 2008 and 2017. Five species were reported, with members of the subgenus being the most common. The implementation of novel diagnostic procedures for leishmaniasis such as the one reported here is needed to establish a gold standard practice for the diagnosis and treatment of leishmaniasis.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.19-0095
2019-07-22
2020-09-21
Loading full text...

Full text loading...

/deliver/fulltext/14761645/101/3/tpmd190095.html?itemId=/content/journals/10.4269/ajtmh.19-0095&mimeType=html&fmt=ahah

References

  1. World Health Organization, 2018. Leishmaniasis. Available at: http://www.who.int/gho/neglected_diseases/leishmaniasis/en/. Accessed July 16, 2018.
    [Google Scholar]
  2. Faulde M, Schrader J, Heyl G, Amirih M, 2008. Differences in transmission seasons as an epidemiological tool for characterization of anthroponotic and zoonotic cutaneous leishmaniasis in northern Afghanistan. Acta Trop 105: 131138.
    [Google Scholar]
  3. Akhoundi M, Kuhls K, Cannet A, Votýpka J, Marty P, Delaunay P, Sereno D, 2016. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl Trop Dis 10: e0004349.
    [Google Scholar]
  4. Ceccarelli M, Diotallevi A, Andreoni F, Vitale F, Galluzzi L, Magnani M, 2018. Exploiting genetic polymorphisms in metabolic enzymes for rapid screening of Leishmania infantum genotypes. Parasit Vectors 11: 572.
    [Google Scholar]
  5. de Morais RC, da Costa Oliveira CN, de Albuquerque Sda C, Mendonca Trajano Silva LA, Pessoa ESR, Alves da Cruz HL, de Brito ME, de Paiva Cavalcanti M, 2016. Real-time PCR for Leishmania species identification: evaluation and comparison with classical techniques. Exp Parasitol 165: 4350.
    [Google Scholar]
  6. Hernández C, Alvarez C, González C, Ayala MS, León CM, Ramírez JD, 2014. Identification of six New World Leishmania species through the implementation of a high-resolution melting (HRM) genotyping assay. Parasit Vectors 7: 501.
    [Google Scholar]
  7. Herrera G, Hernandez C, Ayala MS, Florez C, Teheran AA, Ramirez JD, 2017. Evaluation of a multilocus sequence typing (MLST) scheme for Leishmania (Viannia) braziliensis and Leishmania (Viannia) panamensis in Colombia. Parasit Vectors 10: 236.
    [Google Scholar]
  8. Schönian G, Nasereddin A, Dinse N, Schweynoch C, Schallig H, Presber W, Jaffe CL, 2003. PCR diagnosis and characterization of Leishmania in local and imported clinical samples. Diagn Microbiol Infect Dis 47: 349358.
    [Google Scholar]
  9. Van der Auwera G, Ravel C, Verweij JJ, Bart A, Schonian G, Felger I, 2014. Evaluation of four single-locus markers for Leishmania species discrimination by sequencing. J Clin Microbiol 52: 10981104.
    [Google Scholar]
  10. Sagi O, Berkowitz A, Codish S, Novack V, Rashti A, Akad F, Shemer-Avni Y, 2017. Sensitive molecular diagnostics for cutaneous leishmaniasis. Open Forum Infect Dis 4: ofx037.
    [Google Scholar]
  11. McManus DP, Bowles J, 1996. Molecular genetic approaches to parasite identification: their value in diagnostic parasitology and systematics. Int J Parasitol 26: 687704.
    [Google Scholar]
  12. Mouttaki T, Morales-Yuste M, Merino-Espinosa G, Chiheb S, Fellah H, Martin-Sanchez J, Riyad M, 2014. Molecular diagnosis of cutaneous leishmaniasis and identification of the causative Leishmania species in Morocco by using three PCR-based assays. Parasit Vectors 7: 420.
    [Google Scholar]
  13. Pourmohammadi B, Motazedian M, Hatam G, Kalantari M, Habibi P, Sarkari B, 2010. Comparison of three methods for diagnosis of cutaneous leishmaniasis. Iran J Parasitol 5: 18.
    [Google Scholar]
  14. Sundar S, Rai M, 2002. Laboratory diagnosis of visceral leishmaniasis. Clin Diagn Lab Immunol 9: 951958.
    [Google Scholar]
  15. Wilson SM, 1995. DNA-based methods in the detection of Leishmania parasites: field applications and practicalities. Ann Trop Med Parasitol 89: 95100.
    [Google Scholar]
  16. Reithinger R, Dujardin JC, 2007. Molecular diagnosis of leishmaniasis: current status and future applications. J Clin Microbiol 45: 2125.
    [Google Scholar]
  17. Kaufer A, Ellis J, Stark D, Barratt J, 2017. The evolution of trypanosomatid taxonomy. Parasit Vectors 10: 287.
    [Google Scholar]
  18. Barratt J, Kaufer A, Peters B, Craig D, Lawrence A, Roberts T, Lee R, McAuliffe G, Stark D, Ellis J, 2017. Isolation of novel trypanosomatid, Zelonia australiensis sp. nov. (Kinetoplastida: Trypanosomatidae) provides support for a Gondwanan origin of dixenous parasitism in the Leishmaniinae. PLoS Negl Trop Dis 11: e0005215.
    [Google Scholar]
  19. Mugasa CM, Laurent T, Schoone GJ, Basiye FL, Saad AA, el Safi S, Kager PA, Schallig H, 2010. Simplified molecular detection of Leishmania parasites in various clinical samples from patients with leishmaniasis. Parasit Vectors 3: 13.
    [Google Scholar]
  20. Lin RH, Lai DH, Zheng LL, Wu J, Lukes J, Hide G, Lun ZR, 2015. Analysis of the mitochondrial maxicircle of Trypanosoma lewisi, a neglected human pathogen. Parasit Vectors 8: 665.
    [Google Scholar]
  21. Telleria J, Lafay B, Virreira M, Barnabe C, Tibayrenc M, Svoboda M, 2006. Trypanosoma cruzi: sequence analysis of the variable region of kinetoplast minicircles. Exp Parasitol 114: 279288.
    [Google Scholar]
  22. Flegontov PN, Zhirenkina EN, Gerasimov ES, Ponirovsky EN, Strelkova MV, Kolesnikov AA, 2009. Selective amplification of maxicircle classes during the life cycle of Leishmania major. Mol Biochem Parasitol 165: 142152.
    [Google Scholar]
  23. Gerasimov ES, Gasparyan AA, Litus IA, Logacheva MD, Kolesnikov AA, 2017. Minicircle kinetoplast genome of insect trypanosomatid Leptomonas pyrrhocoris. Biochemistry (Mosc) 82: 572578.
    [Google Scholar]
  24. Simpson L, Douglass SM, Lake JA, Pellegrini M, Li F, 2015. Comparison of the mitochondrial genomes and steady state transcriptomes of two strains of the trypanosomatid parasite, Leishmania tarentolae. PLoS Negl Trop Dis 9: e0003841.
    [Google Scholar]
  25. Yatawara L, Le TH, Wickramasinghe S, Agatsuma T, 2008. Maxicircle (mitochondrial) genome sequence (partial) of Leishmania major: gene content, arrangement and composition compared with Leishmania tarentolae. Gene 424: 8086.
    [Google Scholar]
  26. Kaufer A, Barratt J, Stark D, Ellis J, 2019. The complete coding region of the maxicircle as a superior phylogenetic marker for exploring evolutionary relationships between members of the Leishmaniinae. Infect Genet Evol 70: 90100.
    [Google Scholar]
  27. Akhoundi M et al., 2017. Leishmania infections: molecular targets and diagnosis. Mol Asp Med 57: 129.
    [Google Scholar]
  28. Bensoussan E, Nasereddin A, Jonas F, Schnur LF, Jaffe CL, 2006. Comparison of PCR assays for diagnosis of cutaneous leishmaniasis. J Clin Microbiol 44: 14351439.
    [Google Scholar]
  29. Roberts T, Barratt J, Sandaradura I, Lee R, Harkness J, Marriott D, Ellis J, Stark D, 2015. Molecular epidemiology of imported cases of leishmaniasis in Australia from 2008 to 2014. PLoS One 10: e0119212.
    [Google Scholar]
  30. Stark D, van Hal S, Lee R, Marriott D, Harkness J, 2008. Leishmaniasis, an emerging imported infection: report of 20 cases from Australia. J Travel Med 15: 351354.
    [Google Scholar]
  31. Chouihi E, Amri F, Bouslimi N, Siala E, Selmi K, Zallagua N, Ben Abdallah R, Bouratbine A, Aoun K, 2009. Cultures on NNN medium for the diagnosis of leishmaniasis. Pathol Biol (Paris) 57: 219224.
    [Google Scholar]
  32. Li H, Durbin R, 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 17541760.
    [Google Scholar]
  33. Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, Mardis ER, Weinstock GM, Wilson RK, Ding L, 2009. VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics 25: 22832285.
    [Google Scholar]
  34. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R; 1000 Genome Project Data Processing Subgroup, 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25: 20782079.
    [Google Scholar]
  35. Gouy M, Guindon S, Gascuel O, 2010. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27: 221224.
    [Google Scholar]
  36. Swofford DL, 1993. PAUP–a computer-program for phylogenetic inference using maximum parsiomy. J Gen Physiol 102: A9.
    [Google Scholar]
  37. Swofford DL, Bell CD, 2017. PAUP Manual Available at: http://phylosolutions.com/paup-documentation/paupmanual.pdf. Accessed July 17, 2018.
    [Google Scholar]
  38. Kumar S, Stecher G, Tamura K, 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33: 18701874.
    [Google Scholar]
  39. Espinosa OA, Serrano MG, Camargo EP, Teixeira MMG, Shaw JJ, 2018. An appraisal of the taxonomy and nomenclature of trypanosomatids presently classified as Leishmania and Endotrypanum. Parasitology 145: 430442.
    [Google Scholar]
  40. Jirků M, Yurchenko VY, Lukeš J, Maslov DA, 2012. New species of insect trypanosomatids from Costa Rica and the proposal for a new subfamily within the trypanosomatidae. J Eukaryot Microbiol 59: 537547.
    [Google Scholar]
  41. El Hamouchi A, El Kacem S, Ejghal R, Lemrani M, 2018. Genetic polymorphism in Leishmania infantum isolates from human and animals determined by nagt PCR-RFLP. Infect Dis Poverty 7: 54.
    [Google Scholar]
  42. Espada CR, Ortiz PA, Shaw JJ, Barral AMP, Costa JML, Uliana SRB, Coelho AC, 2018. Identification of Leishmania (Viannia) species and clinical isolates of Leishmania (Leishmania) amazonensis from Brazil using PCR-RFLP of the heat-shock protein 70 gene reveals some unexpected observations. Diagn Microbiol Infect Dis 91: 312318.
    [Google Scholar]
  43. Mauricio IL, Gaunt MW, Stothard JR, Miles MA, 2001. Genetic typing and phylogeny of the Leishmania donovani complex by restriction analysis of PCR amplified gp63 intergenic regions. Parasitology 122: 393403.
    [Google Scholar]
  44. Pratlong F, Lami P, Ravel C, Balard Y, Dereure J, Serres G, Baidouri FE, Dedet JP, 2013. Geographical distribution and epidemiological features of old world Leishmania infantum and Leishmania donovani foci, based on the isoenzyme analysis of 2277 strains. Parasitology 140: 423434.
    [Google Scholar]
  45. Simon S, Veron V, Carme B, 2010. Leishmania spp. identification by polymerase chain reaction-restriction fragment length polymorphism analysis and its applications in French Guiana. Diagn Microbiol Infect Dis 66: 175180.
    [Google Scholar]
  46. Monroy-Ostria A, Nasereddin A, Monteon VM, Guzman-Bracho C, Jaffe CL, 2014. ITS1 PCR-RFLP diagnosis and characterization of Leishmania in clinical samples and strains from cases of human cutaneous leishmaniasis in states of the Mexican southeast. Interdiscip Perspect Infect Dis 2014: 607287.
    [Google Scholar]
  47. Bañuls AL, Guerrini F, LePont F, Barrera C, Espinel I, Guderian R, Echeverria R, Tibayrenc M, 1997. Evidence for hybridization by multilocus enzyme electrophoresis and random amplified polymorphic DNA between Leishmania braziliensis and Leishmania panamensis/guyanensis in Ecuador. J Eukaryot Microbiol 44: 408411.
    [Google Scholar]
  48. Fraga J, Montalvo AM, Van der Auwera G, Maes I, Dujardin JC, Requena JM, 2013. Evolution and species discrimination according to the Leishmania heat-shock protein 20 gene. Infect Genet Evol 18: 229237.
    [Google Scholar]
  49. Garcia AL, Kindt A, Quispe-Tintaya KW, Bermudez H, Llanos A, Arevalo J, Banuls AL, De Doncker S, Le Ray D, Dujardin JC, 2005. American tegumentary leishmaniasis: antigen-gene polymorphism, taxonomy and clinical pleomorphism. Infect Genet Evol 5: 109116.
    [Google Scholar]
  50. Lukeš J et al., 2007. Evolutionary and geographical history of the Leishmania donovani complex with a revision of current taxonomy. Proc Natl Acad Sci USA 104: 93759380.
    [Google Scholar]
  51. Jamjoom MB, Ashford RW, Bates PA, Chance ML, Kemp SJ, Watts PC, Noyes HA, 2004. Leishmania donovani is the only cause of visceral leishmaniasis in east Africa; previous descriptions of L. infantum and “L. archibaldi” from this region are a consequence of convergent evolution in the isoenzyme data. Parasitology 129: 399409.
    [Google Scholar]
  52. de Menezes JP, Guedes CE, Petersen AL, Fraga DB, Veras PS, 2015. Advances in development of new treatment for leishmaniasis. Biomed Res Int 2015: 11.
    [Google Scholar]
  53. Hendrickx S, Van den Kerkhof M, Mabille D, Cos P, Delputte P, Maes L, Caljon G, 2017. Combined treatment of miltefosine and paromomycin delays the onset of experimental drug resistance in Leishmania infantum. PLoS Negl Trop Dis 11: e0005620.
    [Google Scholar]
  54. Francesconi VA, Francesconi F, Ramasawmy R, Romero GAS, Alecrim M, 2018. Failure of fluconazole in treating cutaneous leishmaniasis caused by Leishmania guyanensis in the Brazilian Amazon: an open, nonrandomized phase 2 trial. PLoS Negl Trop Dis 12: e0006225.
    [Google Scholar]
  55. Guerra JA, Prestes SR, Silveira H, Coelho LI, Gama P, Moura A, Amato V, Barbosa M, Ferreira LC, 2011. Mucosal leishmaniasis caused by Leishmania (Viannia) braziliensis and Leishmania (Viannia) guyanensis in the Brazilian Amazon. PLoS Negl Trop Dis 5: e980.
    [Google Scholar]
  56. Achtman JC, Ellis DL, Saylors B, Boh EE, 2016. Cutaneous leishmaniasis caused by Leishmania (Viannia) panamensis in 2 travelers. JAAD Case Rep 2: 9597.
    [Google Scholar]
  57. Romero GA, Guerra MV, Paes MG, Macedo VO, 2001. Comparison of cutaneous leishmaniasis due to Leishmania (Viannia) braziliensis and L. (V.) guyanensis in Brazil: therapeutic response to meglumine antimoniate. Am J Trop Med Hyg 65: 456465.
    [Google Scholar]
  58. Christen JR et al., 2018. Use of the intramuscular route to administer pentamidine isethionate in Leishmania guyanensis cutaneous leishmaniasis increases the risk of treatment failure. Trav Med Infect Dis 24: 3136.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.19-0095
Loading
/content/journals/10.4269/ajtmh.19-0095
Loading

Data & Media loading...

Supplemental files

  • Received : 30 Jan 2019
  • Accepted : 02 Jun 2019
  • Published online : 22 Jul 2019
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error