Volume 101, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Surveillance of Chagas in the United States show more is known about prevalence in animals and vectors than in humans. Leveraging health information technology (HIT) may augment surveillance efforts for Chagas disease (CD), given its ability to disseminate information through health information exchanges (HIE) and geographical information systems (GISs). This systematic review seeks to determine whether technological tracking of –infected domestic and/or sylvatic animals as sentinels can serve as a potential surveillance resource to manage CD in the southern United States. A Boolean search string was used in PubMed and the Cumulative Index to Nursing and Allied Health Literature (CINAHL). Relevance of results was established and analysis of articles was performed by multiple reviewers. The overall Cohen statistic was 0.73, demonstrating moderate agreement among the study team. Four major themes were derived for this systematic review ( = 41): animals act as reservoir hosts to perpetuate CD, transmission to humans could be dependent on cohabitation proximity, variations in genotypes could lead to different clinical manifestations, and leveraging technology to track in domestic animals could reveal prevalent areas or “danger zones.” Overall, our systematic review identified that HIT can serve as a surveillance tool to manage CD. Health information technology can serve as a surveillance tool to manage CD. This can be accomplished by tracking domestic and/or sylvatic animals as sentinels within a GIS. Information can be disseminated through HIE for use by clinicians and public health officials to reach at-risk populations.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Centers for Disease Control and Prevention (CDC), 2007. Blood donor screening for Chagas disease–United States, 2006–2007. MMWR Morb Mortal Wkly Rep 56: 141143. [Google Scholar]
  2. Conners EE, Vinetz JM, Weeks JR, Brouwer KC, , 2016. A global systematic review of Chagas disease prevalence among migrants. Acta Trop 156: 6878. [Google Scholar]
  3. Montgomery SP, Parise ME, Dotson EM, Bialek SR, , 2016. What do we know about Chagas disease in the United States? Am J Trop Med Hyg 95: 12251227. [Google Scholar]
  4. Garcia MN, Woc-Colburn L, Aguilar D, Hotez PJ, Murray KO, , 2015. Historical perspectives on the epidemiology of human Chagas disease in Texas and recommendations for enhanced understanding of clinical Chagas disease in the southern United States. PLoS Negl Trop Dis 9: e0003981. [Google Scholar]
  5. Bern C, Montgomery SP, , 2009. An estimate of the burden of Chagas disease in the United States. Clin Infect Dis 49: e52e54. [Google Scholar]
  6. Rassi A, Jr. Rassi A, Marin-Neto JA, , 2010. Chagas disease. Lancet 375: 13881402. [Google Scholar]
  7. Curtis-Robles R, Wozniak EJ, Auckland LD, Hamer GL, Hamer SA, , 2015. Combining public health education and disease ecology research: using citizen science to assess Chagas disease entomological risk in Texas. PLoS Negl Trop Dis 9: e0004235. [Google Scholar]
  8. Shapiro JS, Mostashari F, Hripcsak G, Soulakis N, Kuperman G, , 2011. Using health information exchange to improve public health. Am J Public Health 101: 616623. [Google Scholar]
  9. Fradelos EC, Papathanasiou IV, Mitsi D, Tsaras K, Kleisiaris CF, Kourkouta L, , 2014. Health based geographic information systems (GIS) and their applications. Acta Inform Med 22: 402405. [Google Scholar]
  10. Roque ALR, Xavier SC, Gerhardt M, Silva MF, Lima VS, D’Andrea PS, Jansen AM, , 2013. Trypanosoma cruzi among wild and domestic mammals in different areas of the Abaetetuba municipality (Pará State, Brazil), an endemic Chagas disease transmission area. Vet Parasitology 193: 7177. [Google Scholar]
  11. Curtis-Robles R, Hamer SA, Lane S, Levy MZ, Hamer GL, , 2018. Bionomics and spatial distribution of triatomine vectors of Trypanosoma cruzi in Texas and other southern states, USA. Am J Trop Med Hyg 98: 113121. [Google Scholar]
  12. Floridia-Yapur N, 2016. The TcTASV proteins are novel promising antigens to detect active Trypanosoma cruzi infection in dogs. Parasitology 143: 13821389. [Google Scholar]
  13. Soriano‐Arandes A, Angheben A, Serre‐Delcor N, Treviño‐Maruri B, Gomez i Prat J, Jackson Y, , 2016. Control and management of congenital Chagas disease in Europe and other non‐endemic countries: current policies and practices. Trop Med Int Health 21: 590596. [Google Scholar]
  14. Shea BJ, Grimshaw JM, Wells GA, Boers M, Andersson N, Hamel C, Porter AC, Tugwell P, Moher D, Bouter LM, , 2007. Development of AMSTAR: a measurement tool to assess the methodological quality of systematic reviews. BMC Med Res Methodol 7: 10. [Google Scholar]
  15. Moher D, Liberati A, Tetzlaff J, Altman DG, , 2009. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151: 264269. [Google Scholar]
  16. Higgins JPT, , 2008. Cochrane Handbook for Systematic Reviews of Interventions. London, United Kingdom: Cochrane Collaboration. [Google Scholar]
  17. Bennett C, 2018. Chagas disease surveillance activities—seven states, 2017. MMWR Morb Mortal Wkly Rep 67: 738. [Google Scholar]
  18. Vandermark C, Zieman E, Boyles E, Nielsen CK, Davis C, Jiménez FA, , 2018. Trypanosoma cruzi strain TcIV infects raccoons from Illinois. Mem Inst Oswaldo Cruz 113: 3037. [Google Scholar]
  19. Wormington JD, Gillum C, Meyers AC, Hamer GL, Hamer SA, , 2018. Daily activity patterns of movement and refuge use in Triatoma gerstaeckeri and Rhodnius prolixus (Hemiptera: reduviidae), vectors of the Chagas disease parasite. Acta Trop 185: 301306. [Google Scholar]
  20. Aleman A, Guerra T, Maikis TJ, Milholland MT, Castro-Arellano I, Forstner MR, Hahn D, , 2017. The prevalence of Trypanosoma cruzi, the causal agent of Chagas disease, in Texas rodent populations. EcoHealth 14: 130143. [Google Scholar]
  21. Arce-Fonseca M, Carrillo-Sánchez SC, Molina-Barrios RM, Martínez-Cruz M, Cedillo-Cobián JR, Henao-Díaz YA, Rodríguez-Morales O, , 2017. Seropositivity for Trypanosoma cruzi in domestic dogs from Sonora, Mexico. Infect Dis Poverty 6: 120. [Google Scholar]
  22. Gunter SM, Brown EL, Gorchakov R, Murray KO, Garcia MN, , 2017. Sylvatic transmission of Trypanosoma cruzi among domestic and wildlife reservoirs in Texas, USA: a review of the historical literature. Zoonoses Public Health 64: 313327. [Google Scholar]
  23. Horney J, Goldberg D, Hammond T, Stone K, Smitherman S, , 2017. Assessing the prevalence of risk factors for neglected tropical diseases in Brazos County, Texas. PLoS Curr 9, pii: ecurrents.outbreaks.93540c6c8c7831670591b0264479269c. [Google Scholar]
  24. Curtis-Robles R, Lewis BC, Hamer SA, , 2016. High Trypanosoma cruzi infection prevalence associated with minimal cardiac pathology among wild carnivores in central Texas. Int J Parasitol Parasites Wildl 5: 117123. [Google Scholar]
  25. Manne-Goehler J, Umeh CA, Montgomery SP, Wirtz VJ, , 2016. Estimating the burden of Chagas disease in the United States. PLoS Neglected Trop Dis 10: e0005033. [Google Scholar]
  26. Sánchez-González G, Figueroa-Lara A, Elizondo-Cano M, Wilson L, Novelo-Garza B, Valiente-Banuet L, Ramsey JM, , 2016. Cost-effectiveness of blood donation screening for Trypanosoma cruzi in Mexico. PLoS Neglected Trop Dis 10: e0004528. [Google Scholar]
  27. Castillo-Neyra R, Chu LC, Quispe-Machaca V, Ancca-Juarez J, Chavez FSM, Mazuelos MB, Naquira C, Bern C, Gilman RH, Levy MZ, , 2015. The potential of canine sentinels for reemerging Trypanosoma cruzi transmission. Prev Vet Med 120: 349356. [Google Scholar]
  28. Perez CJ, Lymbery AJ, Thompson RA, , 2015. Reactivation of Chagas disease: implications for global health. Trends Parasitol 31: 595603. [Google Scholar]
  29. Valença-Barbosa C, Fernandes FA, Santos HLC, Sarquis O, Harry M, Almeida CE, Lima MM, , 2015. Molecular identification of food sources in triatomines in the Brazilian northeast: roles of goats and rodents in Chagas disease epidemiology. Am J Trop Med Hyg 93: 994997. [Google Scholar]
  30. Esteve-Gassent MD, 2014. Pathogenic landscape of transboundary zoonotic diseases in the Mexico–US border along the Rio Grande. Front Public Health 2: 177. [Google Scholar]
  31. Garcia MN, Hotez PJ, Murray KO, , 2014. Potential novel risk factors for autochthonous and sylvatic transmission of human Chagas disease in the United States. Parasit Vectors 7: 311. [Google Scholar]
  32. Mejía-Jaramillo AM, Agudelo-Uribe LA, Dib JC, Ortiz S, Solari A, Triana-Chávez O, , 2014. Genotyping of Trypanosoma cruzi in a hyper-endemic area of Colombia reveals an overlap among domestic and sylvatic cycles of Chagas disease. Parasit Vectors 7: 108. [Google Scholar]
  33. Soriano-Arandes A, Basile L, Ouaarab H, Clavería I, i Prat JG, Cabezos J, Ciruela P, Albajar-Viñas P, Jané M, , 2014. Controlling congenital and paediatric Chagas disease through a community health approach with active surveillance and promotion of paediatric awareness. BMC Public Health 14: 1201. [Google Scholar]
  34. Tenney TD, Curtis-Robles R, Snowden KF, Hamer SA, , 2014. Shelter dogs as sentinels for Trypanosoma cruzi transmission across Texas. Emerg Infect Dis 20: 1323. [Google Scholar]
  35. Woodhall D, Jones JL, Cantey PT, Wilkins PP, Montgomery SP, , 2014. Neglected parasitic infections: what every family physician needs to know. Am Fam Physician 89: 803811. [Google Scholar]
  36. Carabarin-Lima A, González-Vázquez MC, Rodríguez-Morales O, Baylón-Pacheco L, Rosales-Encina JL, Reyes-López PA, Arce-Fonseca M, , 2013. Chagas disease (American trypanosomiasis) in Mexico: an update. Acta Trop 127: 126135. [Google Scholar]
  37. Kessler DA, Shi PA, Avecilla ST, Shaz BH, , 2013. Results of lookback for Chagas disease since the inception of donor screening at New York Blood Center. Transfusion 53: 10831087. [Google Scholar]
  38. Kjos SA, Marcet PL, Yabsley MJ, Kitron U, Snowden KF, Logan KS, Barnes JC, Dotson EM, , 2013. Identification of bloodmeal sources and Trypanosoma cruzi infection in triatomine bugs (Hemiptera: Reduviidae) from residential settings in Texas, the United States. J Med Entomol 50: 11261139. [Google Scholar]
  39. Lee BY, Bacon KM, Bottazzi ME, Hotez PJ, , 2013. Global economic burden of Chagas disease: a computational simulation model. Lancet Infect Dis 13: 342348. [Google Scholar]
  40. Orozco MM, Enriquez GF, Alvarado-Otegui JA, Cardinal MV, Schijman AG, Kitron U, Gürtler RE, , 2013. New sylvatic hosts of Trypanosoma cruzi and their reservoir competence in the humid Chaco of Argentina: a longitudinal study. Am J Trop Med Hyg 88: 872882. [Google Scholar]
  41. Thompson RA, , 2013. Parasite zoonoses and wildlife: one health, spillover and human activity. Int J Parasitol 43: 10791088. [Google Scholar]
  42. Pineda V, Saldaña A, Monfante I, Santamaría A, Gottdenker NL, Yabsley MJ, Rapoport G, Calzada JE, , 2011. Prevalence of trypanosome infections in dogs from Chagas disease endemic regions in Panama, Central America. Vet Parasitol 178: 360363. [Google Scholar]
  43. Rosypal AC, Hill R, Lewis S, Barr SC, Valadas S, Gennari SM, Lindsay DS, , 2011. Evaluation of a rapid immunochromatographic dipstick test for detection of antibodies to Trypanosoma cruzi in dogs experimentally infected with isolates obtained from opossums (Didelphis virginiana), armadillos (Dasypus novemcinctus), and dogs (Canis familiaris) from the United States. J Parasitol 97: 140143. [Google Scholar]
  44. Agapova M, Busch MP, Custer B, , 2010. Cost‐effectiveness of screening the US blood supply for Trypanosoma cruzi. Transfusion 50: 22202232. [Google Scholar]
  45. Schmunis GA, Yadon ZE, , 2010. Chagas disease: a Latin American health problem becoming a world health problem. Acta Trop 115: 1421. [Google Scholar]
  46. Castro E, , 2009. Chagas’ disease: lessons from routine donation testing. Transfus Med 19: 1623. [Google Scholar]
  47. Galuppo S, Bacigalupo A, García A, Ortiz S, Coronado X, Cattan PE, Solari A, , 2009. Predominance of Trypanosoma cruzi genotypes in two reservoirs infected by sylvatic Triatoma infestans of an endemic area of Chile. Acta Trop 111: 9093. [Google Scholar]
  48. Cardinal MV, Lauricella MA, Ceballos LA, Lanati L, Marcet PL, Levin MJ, Kitron U, Gürtler RE, Schijman AG, , 2008. Molecular epidemiology of domestic and sylvatic Trypanosoma cruzi infection in rural northwestern Argentina. Int J Parasitol 38: 15331543. [Google Scholar]
  49. Castillo-Riquelme M, Chalabi Z, Lord J, Guhl F, Campbell-Lendrum D, Davies C, Fox-Rushby J, , 2008. Modelling geographic variation in the cost-effectiveness of control policies for infectious vector diseases: the example of Chagas disease. J Health Econ 27: 405426. [Google Scholar]
  50. Piron M, 2008. Seroprevalence of Trypanosoma cruzi infection in at‐risk blood donors in Catalonia (Spain). Transfusion 48: 18621868. [Google Scholar]
  51. Roque AL, Xavier SC, da Rocha MG, Duarte AC, D’Andrea PS, Jansen AM, , 2008. Trypanosoma cruzi transmission cycle among wild and domestic mammals in three areas of orally transmitted Chagas disease outbreaks. Am J Trop Med Hyg 79: 742749. [Google Scholar]
  52. Cardinal MV, Lauricella MA, Marcet PL, Orozco MM, Kitron U, Gürtler RE, , 2007. Impact of community-based vector control on house infestation and Trypanosoma cruzi infection in Triatoma infestans, dogs and cats in the Argentine Chaco. Acta Trop 103: 201211. [Google Scholar]
  53. Hanford EJ, Zhan FB, Lu Y, Giordano A, , 2007. Chagas disease in Texas: recognizing the significance and implications of evidence in the literature. Soc Sci Med 65: 6079. [Google Scholar]

Data & Media loading...

Supplemental appendix

  • Received : 16 Jan 2019
  • Accepted : 14 Jul 2019
  • Published online : 23 Sep 2019

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error