1921
Volume 101, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

This is the first cross-sectional study of the seroprevalence and risk factors for in Jordan. A total of 781 individuals from 11 governorates of Jordan were tested by SERION ELISA classic IgG Phase 2. A validated and pretested questionnaire was used to collect risk factors and demographic data. The overall seroprevalence for was 24.2% (95% CI; 21.3–27.3%). Unadjusted odds ratios showed that governorate of residence, consumption of raw milk, and ownership of sheep, goats, and dogs were significantly ( ≤ 0.05) associated with seropositivity. The multivariate logistic regression showed that individuals who own small ruminants had three times greater odds of seropositivity than those who do not own a small ruminant, after controlling for age, gender, raw milk consumption, and ownership of dogs. In addition, individuals who live in Al-Karak, Az-Zarqa, and Al-Tafilah had significantly greater odds of seropositivity compared with individuals who live in the capital city, Amman (OR = 3.6, 4.8, and 2.7, respectively). This study suggests that preventive measures should be practiced in ruminant farms in Jordan to avoid . infection. should also be considered in the differential diagnosis of febrile-like illnesses in Jordan, especially among farmers and veterinarians.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.19-0049
2019-05-20
2020-07-04
Loading full text...

Full text loading...

/deliver/fulltext/14761645/101/1/tpmd190049.html?itemId=/content/journals/10.4269/ajtmh.19-0049&mimeType=html&fmt=ahah

References

  1. Kersh GJ et al., 2013. Presence and persistence of Coxiella burnetii in the environments of goat farms associated with a Q fever outbreak. Appl Environ Microbiol 79: 16971703.
    [Google Scholar]
  2. Brooke RJ, Kretzschmar ME, Mutters NT, Teunis PF, 2013. Human dose response relation for airborne exposure to Coxiella burnetii. BMC Infect Dis 13: 488.
    [Google Scholar]
  3. Amitai Z et al., 2010. A large Q fever outbreak in an urban school in central Israel. Clin Infect Dis 50: 14331438.
    [Google Scholar]
  4. D’Amato F, Million M, Edouard S, Delerce J, Robert C, Marrie T, Raoult D, 2014. Draft genome sequence of Coxiella burnetii Dog Utad, a strain isolated from a dog-related outbreak of Q fever. New Microbes New Infect 2: 136137.
    [Google Scholar]
  5. Komiya T, Sadamasu K, Toriniwa H, Kato K, Arashima Y, Fukushi H, Hirai K, Arakawa Y, 2003. Epidemiological survey on the route of Coxiella burnetii infection in an animal hospital. J Infect Chemother 9: 151155.
    [Google Scholar]
  6. Maurin M, Raoult D, 1999. Q fever. Clin Microbiol Rev 12: 518553.
    [Google Scholar]
  7. Raoult D, Marrie T, Mege J, 2005. Natural history and pathophysiology of Q fever. Lancet Infect Dis 5: 219226.
    [Google Scholar]
  8. Almogren A, Shakoor Z, Hasanato R, Adam MH, 2013. Q fever: a neglected zoonosis in Saudi Arabia. Ann Saudi Med 33: 464468.
    [Google Scholar]
  9. Ergas D, Abdul-Hai A, Sthoeger ZM, 2008. Acalculous cholecystitis: an unusual presentation of acute Q fever masquerading as infectious endocarditis. Am J Med Sci 336: 356357.
    [Google Scholar]
  10. Vest KG, Clark LL, 2014. Serosurvey and observational study of US army veterinary corps officers for Q fever antibodies from 1989 to 2008. Zoonoses Public Health 61: 271282.
    [Google Scholar]
  11. Obaidat MM, Kersh GJ, 2017. Prevalence and risk factors of Coxiella burnetii antibodies in bulk milk from cattle, sheep, and goats in Jordan. J Food Prot 80: 561566.
    [Google Scholar]
  12. World Bank, 2017. Jordan data. World Bank. Available at: https://data.worldbank.org/country/jordan. Accessed January 8, 2019.
    [Google Scholar]
  13. Wegdam-Blans MC, Wielders CC, Meekelenkamp J, Korbeeck JM, Herremans T, Tjhie HT, Bijlmer HA, Koopmans MP, Schneeberger PM, 2012. Evaluation of commonly used serological tests for detection of Coxiella burnetii antibodies in well-defined acute and follow-up sera. Clin Vaccine Immunol 19:11101115.
    [Google Scholar]
  14. Doung-Ngern P, Chuxnum T, Pangjai D, Opaschaitat P, Kittiwan N, Rodtian P, Buameetoop N, Kersh GJ, Padungtod P, 2017. Seroprevalence of Coxiella burnetii antibodies among ruminants and occupationally exposed people in Thailand, 2012–2013. Am J Trop Med Hyg 96: 786790.
    [Google Scholar]
  15. McCaughey C, Murray LJ, McKenna JP, Menzies FD, McCullough SJ, O’Neill HJ, Wyatt DE, Cardwell CR, Coyle PV, 2010. Coxiella burnetii (Q fever) seroprevalence in cattle. Epidemiol Infect 138: 2127.
    [Google Scholar]
  16. Cardeñosa N, Sanfeliu I, Font B, Muñoz T, Nogueras MM, Segura F, 2006. Seroprevalence of human infection by Coxiella burnetii in Barcelona (northeast of Spain). Am J Trop Med Hyg 75: 3335.
    [Google Scholar]
  17. Psaroulaki A, Hadjichristodoulou C, Loukaides F, Soteriades E, Konstantinidis A, Papastergiou P, Ioannidou MC, Tselentis Y, 2006. Epidemiological study of Q fever in humans, ruminant animals, and ticks in Cyprus using a geographical information system. Eur J Clin Microbiol Infect Dis 25: 576586.
    [Google Scholar]
  18. De Lange MM, Schimmer B, Vellema P, Hautvast JL, Schneeberger PM, Van Duijnhoven YT, 2014. Coxiella burnetii seroprevalence and risk factors in sheep farmers and farm residents in The Netherlands. Epidemiol Infect 142: 12311244.
    [Google Scholar]
  19. Schimmer B, Lenferink A, Schneeberger P, Aangenend H, Vellema P, Hautvast J, van Duynhoven Y, 2012. Seroprevalence and risk factors for Coxiella burnetii (Q fever) seropositivity in dairy goat farmers’ households in The Netherlands, 2009–2010. PLoS One 7: e42364.
    [Google Scholar]
  20. de Rooij MM, Schimmer B, Versteeg B, Schneeberger P, Berends BR, Heederik D, van der Hoek W, Wouters IM, 2012. Risk factors of Coxiella burnetii (Q fever) seropositivity in veterinary medicine students. PLoS One 7: e32108.
    [Google Scholar]
  21. Bjork A et al., 2014. First reported multistate human Q fever outbreak in the United States, 2011. Vector Borne Zoonotic Dis 14: 111117.
    [Google Scholar]
  22. Boden K, Brasche S, Straube E, Bischof W, 2014. Specific risk factors for contracting Q fever: lessons from the outbreak Jena. Int J Hyg Environ Health 217: 110115.
    [Google Scholar]
  23. Gilsdorf A, Kroh C, Grimm S, Jensen E, Wagner-Wiening C, Alpers K, 2008. Large Q fever outbreak due to sheep farming near residential areas, Germany, 2005. Epidemiol Infect 136: 10841087.
    [Google Scholar]
  24. Georgiev M et al., 2013. Q fever in humans and farm animals in four European countries, 1982 to 2010. Euro Surveill 18: 20407.
    [Google Scholar]
  25. Whitney EA, Massung RF, Kersh GJ, Fitzpatrick KA, Mook DM, Taylor DK, Huerkamp MJ, Vakili JC, Sullivan PJ, Berkelman RL, 2013. Survey of laboratory animal technicians in the United States for Coxiella burnetii antibodies and exploration of risk factors for exposure. J Am Assoc Lab Anim Sci 52: 725731.
    [Google Scholar]
  26. National Association of State Public Health Veterinarians, 2015. Compendium of veterinary standard precautions for zoonotic disease prevention in veterinary personnel. J Am Vet Med Assoc 247: 12521278.
    [Google Scholar]
  27. Schimmer B, Schotten N, van Engelen E, Hautvast JL, Schneeberger PM, van Duijnhoven YT, 2014. Coxiella burnetii seroprevalence and risk for humans on dairy cattle farms, The Netherlands, 2010–2011. Emerg Infect Dis 20: 417425.
    [Google Scholar]
  28. Van Leuken JPG, Swart AN, Brandsma J, Terink W, Van de Kassteele J, Droogers P, Sauter F, Havelaar AH, Van der Hoek W, 2016. Human Q fever incidence is associated to spatiotemporal environmental conditions. One Health 2: 7787.
    [Google Scholar]
  29. Gale P, Kelly L, Mearns R, Duggan J, Snary EL, 2015. Q fever through consumption of unpasteurised milk and milk products—a risk profile and exposure assessment. J Appl Microbiol 118: 10831095.
    [Google Scholar]
  30. Cerf O, Condron R, 2006. Coxiella burnetii and milk pasteurization: an early application of the precautionary principle? Epidemiol Infect 134: 946951.
    [Google Scholar]
  31. Chang CC et al., 2010. Identification of risk factors of Coxiella burnetii (Q fever) infection in veterinary-associated populations in southern Taiwan. Zoonoses Public Health 57: e95e101.
    [Google Scholar]
  32. McCaughey C, McKenna J, McKenna C, Coyle PV, O’Neill HJ, Wyatt DE, Smyth B, Murray LJ, 2008. Human seroprevalence to Coxiella burnetii (Q fever) in Northern Ireland. Zoonoses Public Health 55: 189194.
    [Google Scholar]
  33. Whitney EA, Massung RF, Candee AJ, Ailes EC, Myers LM, Patterson NE, Berkelman RL, 2009. Seroepidemiologic and occupational risk survey for Coxiella burnetii antibodies among US veterinarians. Clin Infect Dis 48: 550557.
    [Google Scholar]
  34. Straily A, Dahlgren FS, Peterson A, Paddock CD, 2017. Surveillance for Q fever endocarditis in the United States, 1999–2015. Clin Infect Dis 65: 18721877.
    [Google Scholar]
  35. Deyell MW, Chiu B, Ross DB, Alvarez N, 2006. Q fever endocarditis: a case report and review of the literature. Can J Cardiol 22: 781785.
    [Google Scholar]
  36. Martin-Aspas A, Collado-Perez C, Vela-Manzano L, Fernandez-Gutierrez Del Alamo C, Tinoco-Racero I, Giron-Gonzalez JA, 2015. Acute Q fever and the risk of developing endocarditis. Rev Clin Esp 215: 265271.
    [Google Scholar]
  37. Kersh GJ, 2013. Antimicrobial therapies for Q fever. Expert Rev Anti Infect Ther 11: 12071214.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.19-0049
Loading
/content/journals/10.4269/ajtmh.19-0049
Loading

Data & Media loading...

  • Received : 16 Jan 2019
  • Accepted : 22 Apr 2019
  • Published online : 20 May 2019
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error