1921
Volume 101, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

is the etiologic agent of Chagas disease (CD), which can result in severe cardiomyopathy. is endemic to the Americas, and of particular importance in Latin America. In the United States and other non-endemic countries, rising case numbers have also been observed. The currently used drugs are benznidazole (BNZ) and nifurtimox, which have limited efficacy during chronic infection. We repurposed itraconazole (ICZ), originally an antifungal, in combination with amiodarone (AMD), an antiarrhythmic, with the goal of interfering with infection. Human pluripotent stem cells (hiPSCs) were differentiated into cardiomyocytes (hiPSC-CMs). Vero cells or hiPSC-CMs were infected with trypomastigotes of the II or I strain in the presence of ICZ and/or AMD. After 48 hours, cells were Giemsa stained, and infection and multiplication were evaluated microscopically. infection and multiplication were evalutated also by electron microscopy. BNZ was used as a reference compound. Cell metabolism in the presence of test substances was assessed. Itraconazole and AMD showed strain- and dose-dependent interference with infection and multiplication in Vero cells or hiPSC-CMs. Combinations of ICZ and AMD were more effective against than the single substances, or BNZ, without affecting host cell metabolism, and better preserving host cell integrity during infection. Our in vitro data in hiPSC-CMs suggest that a combination of ICZ and AMD might serve as a treatment option for CD in patients, but that different responses due to strain differences have to be taken into account.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.19-0023
2019-06-17
2020-10-27
Loading full text...

Full text loading...

/deliver/fulltext/14761645/101/2/tpmd190023.html?itemId=/content/journals/10.4269/ajtmh.19-0023&mimeType=html&fmt=ahah

References

  1. World Health Organization, 2015. Chagas disease in Latin America: an epidemiological update based on 2010 estimates. Wkly Epidemiol Rec 90: 3344.
    [Google Scholar]
  2. Jurberg C, 2009. Chagas: one hundred years later. Bull World Health Organ 87: 491492.
    [Google Scholar]
  3. Kirchhoff LV, 2011. Epidemiology of American trypanosomiasis (Chagas disease). Adv Parasitol 75: 118.
    [Google Scholar]
  4. Tanowitz HB, Kirchhoff LV, Simon D, Morris SA, Weiss LM, Wittner M, 1992. Chagas’ disease. Clin Microbiol Rev 5: 400419.
    [Google Scholar]
  5. Bonney KM, 2014. Chagas disease in the 21st century: a public health success or an emerging threat? Parasite 21: 11.
    [Google Scholar]
  6. Bern C, Kjos S, Yabsley MJ, Montgomery SP, 2011. Trypanosoma cruzi and Chagas’ disease in the United States. Clin Microbiol Rev 24: 655681.
    [Google Scholar]
  7. Bern C, Montgomery SP, 2009. An estimate of the burden of Chagas disease in the United States. Clin Infect Dis 49: e52e54.
    [Google Scholar]
  8. Monteiro FA, Weirauch C, Felix M, Lazoski C, Abad-Franch F, 2018. Evolution, systematics, and biogeography of the triatominae, vectors of Chagas disease. Adv Parasitol 99: 265344.
    [Google Scholar]
  9. Zingales B et al., 2012. The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infect Genet Evol 12: 240253.
    [Google Scholar]
  10. Vago AR, Andrade LO, Leite AA, d’Avila Reis D, Macedo AM, Adad SJ, Tostes S Jr., Moreira MC, Filho GB, Pena SD, 2000. Genetic characterization of Trypanosoma cruzi directly from tissues of patients with chronic Chagas disease: differential distribution of genetic types into diverse organs. Am J Pathol 156: 18052189.
    [Google Scholar]
  11. Zingales B, 2018. Trypanosoma cruzi genetic diversity: something new for something known about Chagas disease manifestations, serodiagnosis and drug sensitivity. Acta Trop 184: 3852 [Review].
    [Google Scholar]
  12. de Andrade AL, Zicker F, de Oliveira RM, Almeida Silva S, Luquetti A, Travassos LR, Almeida IC, de Andrade SS, de Andrade JG, Martelli CM, 1996. Randomised trial of efficacy of benznidazole in treatment of early Trypanosoma cruzi infection. Lancet 348: 14071413.
    [Google Scholar]
  13. Fragata Filho AA, da Silva MA, Boainain E, 1995. Ethiologic treatment of acute and chronic Chagas’ Disease [corrected]. Sao Paulo Med J 113: 867872.
    [Google Scholar]
  14. Urbina JA, 2010. Specific chemotherapy of Chagas disease: relevance, current limitations and new approaches. Acta Trop 115: 5568.
    [Google Scholar]
  15. Morillo CA et al., 2017. Benznidazole and posaconazole in eliminating parasites in asymptomatic T. cruzi carriers: the STOP-CHAGAS trial. J Am Coll Cardiol 69: 939947.
    [Google Scholar]
  16. Assíria Fontes Martins T, de Figueiredo Diniz L, Mazzeti AL, da Silva do Nascimento ÁF, Caldas S, Caldas IS, de Andrade IM, Ribeiro I, Bahia MT, 2015. Benznidazole/itraconazole combination treatment enhances anti-Trypanosoma cruzi activity in experimental Chagas disease. PLoS One 10: e0128707.
    [Google Scholar]
  17. Paniz-Mondolfi AE, Pérez-Alvarez AM, Lanza G, Márquez E, Concepción JL, 2009. Amiodarone and itraconazole: a rational therapeutic approach for the treatment of chronic Chagas’ disease. Chemotherapy 55: 228233.
    [Google Scholar]
  18. Churko JM, Burridge PW, Wu JC, 2013. Generation of human iPSCs from human peripheral blood mononuclear cells using non-integrative Sendai virus in chemically defined conditions. Methods Mol Biol 1036: 8188.
    [Google Scholar]
  19. Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, Raval KK, Zhang J, Kamp TJ, Palecek SP, 2012. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci USA 109: E1848E1857.
    [Google Scholar]
  20. Andrade D et al., 2012. Trypanosoma cruzi invades host cells through the activation of endothelin and bradykinin receptors: a converging pathway leading to chagasic vasculopathy. Br J Pharmacol 165: 13331347.
    [Google Scholar]
  21. Burridge PW et al., 2014. Chemically defined generation of human cardiomyocytes. Nat Methods 11: 855860.
    [Google Scholar]
  22. Bozzi A, Sayed N, Matsa E, Sass G, Neofytou E, Clemons KV, Correa-Oliveira R, Stevens DA, Wu JC, 2019. Using human induced pluripotent stem cell-derived cardiomyocytes as a model to study Trypanosoma cruzi infection. Stem Cell Reports pii: S2213–S6711(19)30139-0. doi: 10.1016/j.stemcr.2019.04.017 [Epub ahead of print].
    [Google Scholar]
  23. Scudiero DA, Shoemaker RH, Paull KD, Monks A, Tierney S, Nofziger TH, Currens MJ, Seniff D, Boyd MR, 1988. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res 48: 48274833.
    [Google Scholar]
  24. Coura JR, de Castro SL, 2002. A critical review on Chagas disease chemotherapy. Mem Inst Oswaldo Cruz 97: 324.
    [Google Scholar]
  25. Molina I, Salvador F, Sánchez-Montalvá A, Artaza MA, Moreno R, Perin L, Esquisabel A, Pinto L, Pedraz JL, 2017. Pharmacokinetics of benznidazole in healthy volunteers and implications in future clinical trials. Antimicrob Agents Chemother 61: e01912e01916.
    [Google Scholar]
  26. Perdomo VG, Rigalli JP, Luquita MG, Pellegrino JM, Ruiz ML, Catania VA, 2016. Up-regulation of ATP-binding cassette transporters in the THP-1 human macrophage cell line by the antichagasic benznidazole. Mem Inst Oswaldo Cruz 111: 707711.
    [Google Scholar]
  27. Exeltis USA, Inc., 2017. Benznidazole Package Insert. Florham Park, NJ: Exeltis USA, Inc.
    [Google Scholar]
  28. Morillo CA et al., BENEFIT Investigators, 2015. Randomized trial of benznidazole for chronic Chagas’ cardiomyopathy. N Engl J Med 373: 12951306.
    [Google Scholar]
  29. Pecoul B et al., 2016. The BENEFIT Trial: where do we go from here? PLoS Negl Trop Dis 10: e0004343.
    [Google Scholar]
  30. Cancado JR, 2002. Long term evaluation of etiological treatment of Chagas disease with benznidazole. Rev Inst Med Trop Sao Paulo 44: 2937.
    [Google Scholar]
  31. Apt W, 2010. Current and developing therapeutic agents in the treatment of Chagas disease. Drug Des Devel Ther 4: 243253.
    [Google Scholar]
  32. Murta AC, Persechini PM, Padron Tde S, de Souza W, Guimarães JA, Scharfstein J, 1990. Structural and functional identification of GP57/51 antigen of Trypanosoma cruzi as a cysteine proteinase. Mol Biochem Parasitol 43: 2738.
    [Google Scholar]
  33. Sueth-Santiago V, Decote-Ricardo D, Morrot A, Freire-de-Lima CG, Lima ME, 2017. Challenges in the chemotherapy of Chagas disease: looking for possibilities related to the differences and similarities between the parasite and host. World J Biol Chem 8: 5780 [Review].
    [Google Scholar]
  34. Clemons KV, Sobel RA, Martinez M, Correa Oliveira R, Stevens DA, 2017. Lack of efficacy of liposomal amphotericin B against acute and chronic Trypanosoma cruzi infection in mice. Am J Trop Med Hyg 97: 11411146.
    [Google Scholar]
  35. Buckner FS, 2008. Sterol 14-demethylase inhibitors for Trypanosoma cruzi infections. Adv Exp Med Biol 625: 6180.
    [Google Scholar]
  36. Sales Junior PA, Molina I, Fonseca Murta SM, Sánchez-Montalvá A, Salvador F, Corrêa-Oliveira R, Carneiro CM, 2017. Experimental and clinical treatment of Chagas disease: a review. Am J Trop Med Hyg 97: 12891303 [Review].
    [Google Scholar]
  37. Urbina JA, 2001. Specific treatment of Chagas disease: current status and new developments. Curr Opin Infect Dis 14: 733741 [Review].
    [Google Scholar]
  38. Tanowitz HB, Scherer PE, Mota MM, Figueiredo LM, 2017. Adipose tissue: a safe haven for parasites? Trends Parasitol 33: 276284.
    [Google Scholar]
  39. Sanmarco LM, Eberhardt N, Ponce NE, Cano RC, Bonacci G, Aoki MP, 2018. New insights into the immunobiology of mononuclear phagocytic cells and their relevance to the pathogenesis of cardiovascular diseases. Front Immunol 8: 1921.
    [Google Scholar]
  40. Calvet CM, Melo TG, Garzoni LR, Oliveira FO Jr., Neto DTS, Maria NSL, Meirelles L, Pereira MC, 2012. Current understanding of the Trypanosoma cruzi-cardiomyocyte interaction. Front Immunol 3: 327.
    [Google Scholar]
  41. Perfect JR, Savani DV, Durack DT, 1993. Uptake of itraconazole by alveolar macrophages. Antimicrob Agents Chemother 37: 903904.
    [Google Scholar]
  42. McCabe RE, Remington JS, Araujo FG, 1986. In vitro and in vivo effects of itraconazole against Trypanosoma cruzi. Am J Trop Med Hyg 35: 280284.
    [Google Scholar]
  43. Apt W, Aguilera X, Arribada A, Pérez C, Miranda C, Sánchez G, Zulantay I, Cortés P, Rodriguez J, Juri D, 1998. Treatment of chronic Chagas’ disease with itraconazole and allopurinol. Am J Trop Med Hyg 59: 133138.
    [Google Scholar]
  44. Apt W, Arribada A, Zulantay I, Solari A, Sánchez G, Mundaca K, Coronado X, Rodríguez J, Gil LC, Osuna A, 2005. Itraconazole or allopurinol in the treatment of chronic American trypanosomiasis: the results of clinical and parasitological examinations 11 years post-treatment. Ann Trop Med Parasitol 99: 733741.
    [Google Scholar]
  45. Apt W, Arribada A, Zulantay I, Rodríguez J, Saavedra M, Muñoz A, 2013. Treatment of Chagas’ disease with itraconazole: electrocardiographic and parasitological conditions after 20 years of follow-up. J Antimicrob Chemother 68: 21642169.
    [Google Scholar]
  46. Benaim G et al., 2006. Amiodarone has intrinsic anti-Trypanosoma cruzi activity and acts synergistically with posaconazole. J Med Chem 49: 892899.
    [Google Scholar]
  47. Benaim G, Paniz Mondolfi AE, 2012. The emerging role of amiodarone and dronedarone in Chagas disease. Nat Rev Cardiol 9: 605609 [Review].
    [Google Scholar]
  48. Benaim B, Garcia CR, 2011. Targeting calcium homeostasis as the therapy of Chagas’ disease and leishmaniasis–a review. Trop Biomed 28: 471481 [Review].
    [Google Scholar]
  49. Adesse D, Azzam EM, Meirelles MNL, Urbina JA, Garzoni LR, 2011. Amiodarone inhibits Trypanosoma cruzi infection and promotes cardiac cell recovery with gap junction and cytoskeleton reassembly in vitro. Antimicrob Agents Chemother 55: 203210.
    [Google Scholar]
  50. Kirk RG, Lee P, Reasor MJ, 1990. Quantitative X-ray microanalysis of alveolar macrophages after long-term treatment with amiodarone. Exp Mol Pathol 52: 122131.
    [Google Scholar]
  51. Carmo AA, Rocha MO, Silva JL, Ianni BM, Fernandes F, Sabino EC, Ribeiro AL, 2015. Amiodarone and Trypanosoma cruzi parasitemia in patients with Chagas disease. Int J Cardiol 189: 182184.
    [Google Scholar]
  52. Lourenço AM, Faccini CC, Costa CAJ, Mendes GB, Fragata Filho AA, 2018. Evaluation of in vitro anti-Trypanosoma cruzi activity of medications benznidazole, amiodarone hydrochloride, and their combination. Rev Soc Bras Med Trop 51: 5256.
    [Google Scholar]
  53. Curtis-Robles R, Zecca IB, Roman-Cruz V, Carbajal ES, Auckland LD, Flores I, Millard AV, Hamer SA, 2017. Trypanosoma cruzi (agent of Chagas disease) in sympatric human and dog populations in “colonias” of the lower Rio Grande Valley of Texas. Am J Trop Med Hyg 96: 805814.
    [Google Scholar]
  54. Teston AP, Monteiro WM, Reis D, Bossolani GD, Gomes ML, de Araújo SM, Bahia MT, Barbosa MG, Toledo MJ, 2013. In vivo susceptibility to benznidazole of Trypanosoma cruzi strains from the western Brazilian Amazon. Trop Med Int Health 18: 8595.
    [Google Scholar]
  55. Guedes PM, Veloso VM, Tafuri WL, Galvão LM, Carneiro CM, Lana Md, Chiari E, Ataide Soares K, Bahia MT, 2002. The dog as model for chemotherapy of the Chagas’ disease. Acta Trop 84: 917.
    [Google Scholar]
  56. Richle RW, Raaflaub J, 1980. Difference of effective antitrypanosomal dosages of benznidazole in mice and man. Chemotherapeutic and pharmacokinetic results. Acta Trop 37: 257261.
    [Google Scholar]
  57. Perin L, Moreira da Silva R, Fonseca KD, Cardoso JM, Mathias FA, Reis LE, Molina I, Correa-Oliveira R, Vieira PM, Carneiro CM, 2017. Pharmacokinetics and tissue distribution of benznidazole after oral administration in mice. Antimicrob Agents Chemother 61: e02410e02416.
    [Google Scholar]
  58. Debbas NM, du Cailar C, Bexton RS, Demaille JG, Camm AJ, Puech P, 1984. The QT interval: a predictor of the plasma and myocardial concentrations of amiodarone. Br Heart J 51: 316320.
    [Google Scholar]
  59. Janssen Pharmaceutica, 2012. Sporanox (R) Package Insert N.V. Olen, Belgium: Janssen Pharmaceutica.
    [Google Scholar]
  60. Combs TP et al., 2005. The adipocyte as an important target cell for Trypanosoma cruzi infection. J Biol Chem 280: 2408524094.
    [Google Scholar]
  61. Prentice AG, Glasmacher A, 2005. Making sense of itraconazole pharmacokinetics. J Antimicrob Chemother 56 (Suppl 1): i17i22 [Review].
    [Google Scholar]
  62. Cook K, Straubol T, Biva Campbell K, Mourad A, Stiber J, Perfect JR, Johnson M, 2017. QTc prolongation in patients receiving triazoles and amiodarone. Open Forum Infect Dis 4 (Suppl 1): S84.
    [Google Scholar]
  63. Hostetler JS, Heykants J, Clemons KV, Woestenborghs R, Hanson LH, Stevens DA, 1993. Discrepancies in bioassay and chromatography determinations explained by metabolism of itraconazole to hydroxyitraconazole: studies of interpatient variations in concentrations. Antimicrob Agents Chemother 37: 22242227.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.19-0023
Loading
/content/journals/10.4269/ajtmh.19-0023
Loading

Data & Media loading...

  • Received : 08 Jan 2019
  • Accepted : 06 May 2019
  • Published online : 17 Jun 2019
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error