1921
Volume 100, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Current malaria rapid diagnostic tests (RDTs) contain antibodies against –specific histidine-rich protein 2 (PfHRP2), lactate dehydrogenase (pLDH), and aldolase in various combinations. Low or high parasite densities/target antigen concentrations may influence the accuracy and sensitivity of PfHRP2-detecting RDTs. We analyzed the SD Bioline Malaria Ag P.f/Pan RDT performance in relation to parasitemia in Madagascar, where clinical malaria exists alongside . Nine hundred sixty-three samples from patients seeking care for suspected malaria infection were analyzed by RDT, microscopy, and species–specific, ligase detection reaction-fluorescent microsphere assay (LDR-FMA). infection positivity by these diagnostics was 47.9%, 46.9%, and 58%, respectively. –only infections were predominant (microscopy, 45.7%; LDR-FMA, 52.3%). In all, 16.3% of , 70% of , and all of , , and mixed-species infections were submicroscopic. In 423 mono-infections, confirmed by microscopy and LDR-FMA, the parasitemia in those who were positive for both the PfHRP2 and pan-pLDH test bands was significantly higher than that in those who were positive only for the PfHRP2 band ( < 0.0001). parasitemia in those that were detected as –only infections by microscopy but mixed infections by LDR-FMA also showed similar outcome by the RDT band positivity. In addition, we used varying parasitemia (3–0.0001%) of the laboratory-maintained 3D7 strain to validate this observation. A positive pLDH band in high –parasitemic individuals may complicate diagnosis and treatment, particularly when the microscopy is inconclusive for , and the two infections require different treatments.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.18-1013
2019-03-04
2020-09-28
Loading full text...

Full text loading...

/deliver/fulltext/14761645/100/5/tpmd181013.html?itemId=/content/journals/10.4269/ajtmh.18-1013&mimeType=html&fmt=ahah

References

  1. Mouatcho JC, Goldring JP, 2013. Malaria rapid diagnostic tests: challenges and prospects. J Med Microbiol 62: 14911505.
    [Google Scholar]
  2. Mukkala AN, Kwan J, Lau R, Harris D, Kain D, Boggild AK, 2018. An update on malaria rapid diagnostic tests. Curr Infect Dis Rep 20: 49.
    [Google Scholar]
  3. Lee N, Baker J, Andrews KT, Gatton ML, Bell D, Cheng Q, McCarthy J, 2006. Effect of sequence variation in Plasmodium falciparum histidine- rich protein 2 on binding of specific monoclonal antibodies: implications for rapid diagnostic tests for malaria. J Clin Microbiol 44: 27732778.
    [Google Scholar]
  4. Lee N, Gatton ML, Pelecanos A, Bubb M, Gonzalez I, Bell D, Cheng Q, McCarthy JS, 2012. Identification of optimal epitopes for Plasmodium falciparum rapid diagnostic tests that target histidine-rich proteins 2 and 3. J Clin Microbiol 50: 13971405.
    [Google Scholar]
  5. Gamboa D et al., 2010. A large proportion of P. falciparum isolates in the Amazon region of Peru lack pfhrp2 and pfhrp3: implications for malaria rapid diagnostic tests. PLoS One 5: e8091.
    [Google Scholar]
  6. Linh NTP, Park H, Lee J, Liu DX, Seo GE, Sohn HJ, Han JH, Han ET, Shin HJ, Yeo SJ, 2017. Development of monoclonal antibodies for diagnosis of Plasmodium vivax. Korean J Parasitol 55: 623630.
    [Google Scholar]
  7. Malaria Rapid Diagnostic Test Performance, Results of WHO Product Testing of Malaria RDTs: Round 7 (2015–2016). Available at: https://eprints.qut.edu.au/111599/1/111599.pdf.
    [Google Scholar]
  8. Boyce R, Reyes R, Matte M, Ntaro M, Mulogo E, Siedner MJ, 2017. Use of a dual-antigen rapid diagnostic test to screen children for severe Plasmodium falciparum malaria in a high-transmission, resource-limited setting. Clin Infect Dis 65: 15091515.
    [Google Scholar]
  9. [Google Scholar]
  10. World Health Organization List of Prequalified in Vitro Diagnostic Products. Available at: http://www.who.int/diagnostics_laboratory/evaluations/180806_prequalified_product_list.pdf?ua=1.
    [Google Scholar]
  11. Willie N, Mehlotra RK, Howes RE, Rakotomanga TA, Ramboarina S, Ratsimbasoa AC, Zimmerman PA, 2018. Insights into the performance of SD Bioline Malaria Ag P.f/pan rapid diagnostic test and Plasmodium falciparum histidine-rich protein 2 gene variation in Madagascar. Am J Trop Med Hyg 98: 16831691.
    [Google Scholar]
  12. Cheng Q, Gatton ML, Barnwell J, Chiodini P, McCarthy J, Bell D, Cunningham J, 2014. Plasmodium falciparum parasites lacking histidine-rich protein 2 and 3: a review and recommendations for accurate reporting. Malar J 13: 283.
    [Google Scholar]
  13. Gatton ML, Rees-Channer RR, Glenn J, Barnwell JW, Cheng Q, Chiodini PL, Incardona S, Gonzalez IJ, Cunningham J, 2015. Pan-Plasmodium band sensitivity for Plasmodium falciparum detection in combination malaria rapid diagnostic tests and implications for clinical management. Malar J 14: 115.
    [Google Scholar]
  14. Van der Palen M, Gillet P, Bottieau E, Cnops L, Van Esbroeck M, Jacobs J, 2009. Test characteristics of two rapid antigen detection tests (SD FK50 and SD FK60) for the diagnosis of malaria in returned travellers. Malar J 8: 90.
    [Google Scholar]
  15. Hawkes M, Conroy AL, Opoka RO, Namasopo S, Liles WC, John CC, Kain KC, 2014. Use of a three-band HRP2/pLDH combination rapid diagnostic test increases diagnostic specificity for falciparum malaria in Ugandan children. Malar J 13: 43.
    [Google Scholar]
  16. Maltha J, Gillet P, Cnops L, van den Ende J, van Esbroeck M, Jacobs J, 2010. Malaria rapid diagnostic tests: Plasmodium falciparum infections with high parasite densities may generate false positive Plasmodium vivax pLDH lines. Malar J 9: 198.
    [Google Scholar]
  17. Ding XC et al., 2017. Defining the next generation of Plasmodium vivax diagnostic tests for control and elimination: target product profiles. PLoS Negl Trop Dis 11: e0005516.
    [Google Scholar]
  18. Barnadas C, Ratsimbasoa A, Tichit M, Bouchier C, Jahevitra M, Picot S, Menard D, 2008. Plasmodium vivax resistance to chloroquine in Madagascar: clinical efficacy and polymorphisms in pvmdr1 and pvcrt-o genes. Antimicrob Agents Chemother 52: 42334240.
    [Google Scholar]
  19. Menard D et al., 2010. Plasmodium vivax clinical malaria is commonly observed in Duffy-negative Malagasy people. Proc Natl Acad Sci USA 107: 59675971.
    [Google Scholar]
  20. Howes RE et al., 2018. Risk factors for malaria infection in central Madagascar: insights from a cross-sectional population survey. Am J Trop Med Hyg 99: 9951002.
    [Google Scholar]
  21. McNamara DT, Kasehagen LJ, Grimberg BT, Cole-Tobian J, Collins WE, Zimmerman PA, 2006. Diagnosing infection levels of four human malaria parasite species by a polymerase chain reaction/ligase detection reaction fluorescent microsphere-based assay. Am J Trop Med Hyg 74: 413421.
    [Google Scholar]
  22. National Malaria Control Programme of Madagascar, 2015. National Strategic Plan for Malaria Control in Madagascar 2013–2017: Consolidating the Gains with a View to Elimination of Malaria from Madagascar, 2015–2017 Revision.
    [Google Scholar]
  23. Rabarijaona LP, Ariey F, Matra R, Cot S, Raharimalala AL, Ranaivo LH, Le Bras J, Robert V, Randrianarivelojosia M, 2006. Low autochtonous urban malaria in Antananarivo (Madagascar). Malar J 5: 27.
    [Google Scholar]
  24. Randrianasolo L, Tafangy PB, Raharimalala LA, Ratsimbasoa AC, Randriamanantena A, Randrianarivelojosia M, 2007. Rapid diagnostic test for malaria: preliminary study in Madagascar in 2003. Sante 17: 6973.
    [Google Scholar]
  25. Howes RE, Mioramalala SA, Ramiranirina B, Franchard T, Rakotorahalahy AJ, Bisanzio D, Gething PW, Zimmerman PA, Ratsimbasoa A, 2016. Contemporary epidemiological overview of malaria in Madagascar: operational utility of reported routine case data for malaria control planning. Malar J 15: 502.
    [Google Scholar]
  26. Kang SY et al., 2018. Spatio-temporal mapping of Madagascar’s malaria indicator survey results to assess Plasmodium falciparum endemicity trends between 2011 and 2016. BMC Med 16: 71.
    [Google Scholar]
  27. National Malaria Control Programme of Madagascar, 2017. National Strategic Plan for Malaria Control in Madagascar 2018–2022. Progressive Malaria Elimination from Madagascar.
    [Google Scholar]
  28. Baker J et al., 2010. Global sequence variation in the histidine-rich proteins 2 and 3 of Plasmodium falciparum: implications for the performance of malaria rapid diagnostic tests. Malar J 9: 129.
    [Google Scholar]
  29. Mariette N, Barnadas C, Bouchier C, Tichit M, Menard D, 2008. Country-wide assessment of the genetic polymorphism in Plasmodium falciparum and Plasmodium vivax antigens detected with rapid diagnostic tests for malaria. Malar J 7: 219.
    [Google Scholar]
  30. Maltha J, Gillet P, Bottieau E, Cnops L, van Esbroeck M, Jacobs J, 2010. Evaluation of a rapid diagnostic test (CareStart Malaria HRP-2/pLDH (Pf/pan) combo test) for the diagnosis of malaria in a reference setting. Malar J 9: 171.
    [Google Scholar]
  31. Heutmekers M, Gillet P, Cnops L, Bottieau E, Van Esbroeck M, Maltha J, Jacobs J, 2012. Evaluation of the malaria rapid diagnostic test SDFK90: detection of both PfHRP2 and Pf-pLDH. Malar J 11: 359.
    [Google Scholar]
  32. Makler MT, Hinrichs DJ, 1993. Measurement of the lactate dehydrogenase activity of Plasmodium falciparum as an assessment of parasitemia. Am J Trop Med Hyg 48: 205210.
    [Google Scholar]
  33. Piper R, Lebras J, Wentworth L, Hunt-Cooke A, Houze S, Chiodini P, Makler M, 1999. Immunocapture diagnostic assays for malaria using Plasmodium lactate dehydrogenase (pLDH). Am J Trop Med Hyg 60: 109118.
    [Google Scholar]
  34. Gibson LE, Markwalter CF, Kimmel DW, Mudenda L, Mbambara S, Thuma PE, Wright DW, 2017. Plasmodium falciparum HRP2 ELISA for analysis of dried blood spot samples in rural Zambia. Malar J 16: 350.
    [Google Scholar]
  35. Manning L, Laman M, Stanisic D, Rosanas-Urgell A, Bona C, Teine D, Siba P, Mueller I, Davis TM, 2011. Plasma Plasmodium falciparum histidine-rich protein-2 concentrations do not reflect severity of malaria in Papua New Guinean children. Clin Infect Dis 52: 440446.
    [Google Scholar]
  36. Pava Z, Echeverry DF, Diaz G, Murillo C, 2010. Large variation in detection of histidine-rich protein 2 in Plasmodium falciparum isolates from Colombia. Am J Trop Med Hyg 83: 834837.
    [Google Scholar]
  37. Ramutton T et al., 2012. Sequence variation does not confound the measurement of plasma PfHRP2 concentration in African children presenting with severe malaria. Malar J 11: 276.
    [Google Scholar]
  38. Rubach MP et al., 2012. Plasma Plasmodium falciparum histidine-rich protein-2 concentrations are associated with malaria severity and mortality in Tanzanian children. PLoS One 7: e35985.
    [Google Scholar]
  39. Howes RE, Chan ER, Rakotomanga TA, Schulte S, Gibson J, Zikursh M, Franchard T, Ramiranirina B, Ratsimbasoa A, Zimmerman PA, 2017. Prevalence and genetic variants of G6PD deficiency among two Malagasy populations living in Plasmodium vivax-endemic areas. Malar J 16: 139.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.18-1013
Loading
/content/journals/10.4269/ajtmh.18-1013
Loading

Data & Media loading...

  • Received : 28 Dec 2018
  • Accepted : 16 Jan 2019
  • Published online : 04 Mar 2019
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error