1921
Volume 100, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Using the 20-meter shuttle run test (20mSRT) as a morbidity metric, we assessed whether infection was associated with decreased aerobic capacity in Ugandan children across a range of altitudes, either at low (∼600 m) or high (∼1,000 m) altitudes. A total of 305 children were recruited from six schools within the Buliisa District, Lake Albert, Uganda. A subset ( = 96) of these had been previously assessed and treated for schistosomiasis ± malaria 2 weeks prior. Fitness scores on the 20mSRT were translated into VO2max using a standardized equation. Unadjusted and multivariable-adjusted analyses were performed using VO2max as the primary outcome. Analysis of fitness scores from 304 children, inclusive of the subset follow-up cohort, revealed a median VO2max of 45.4 mL kg min (interquartile range: 42.9–48.0 mL kg min). Children residing at high altitudes demonstrated increased aerobic capacities (46.3 versus 44.8 mL kg min, = 0.031). The prevalence of stunting, wasting, egg patent infection, malaria, giardiasis, anemia, and fecal occult blood were 36.7%, 16.1%, 44.3%, 65.2%, 21.4%, 50.6%, and 41.2%, respectively. Median VO2max was elevated in those previously treated, compared with those newly recruited (46.3 versus 44 mL kg min, < 0.001). Multivariable-adjusted analysis revealed a strong negative association between egg patent infection and VO2max at low altitude (beta coefficient: −3.96, 95% CI: −6.56 to −137, = 0.004). This is the first study to document a negative association between infection and aerobic capacity at low altitudes using the 20mSRT.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.18-0922
2019-04-15
2020-05-30
Loading full text...

Full text loading...

/deliver/fulltext/14761645/100/6/tpmd180922.html?itemId=/content/journals/10.4269/ajtmh.18-0922&mimeType=html&fmt=ahah

References

  1. King CH, Dickman K, Tisch DJ, 2005. Reassessment of the cost of chronic helmintic infection: a meta-analysis of disability-related outcomes in endemic schistosomiasis. Lancet 365: 15611569.
    [Google Scholar]
  2. Bustinduy AL, Thomas CL, Fiutem JJ, Parraga IM, Mungai PL, Muchiri EM, Mutuku F, Kitron U, King CH, 2011. Measuring fitness of Kenyan children with polyparasitic infections using the 20-meter shuttle run test as a morbidity metric. PLoS Negl Trop Dis 5: e1213.
    [Google Scholar]
  3. Bustinduy AL, Parraga IM, Thomas CL, Mungai PL, Mutuku F, Muchiri EM, Kitron U, King CH, 2013. Impact of polyparasitic infections on anemia and undernutrition among Kenyan children living in a Schistosoma haematobium-endemic area. Am J Trop Med Hyg 88: 433440.
    [Google Scholar]
  4. Ezeamama AE, Friedman JF, Olveda RM, Acosta LP, Kurtis JD, Mor V, McGarvey ST, 2005. Functional significance of low-intensity polyparasite helminth infections in anemia. J Infect Dis 192: 21602170.
    [Google Scholar]
  5. Ezeamama AE, Friedman JF, Acosta LP, Bellinger DC, Langdon GC, Manalo DL, Olveda RM, Kurtis JD, Mcgarvey ST, 2005. Helminth infection and cognitive impairment among Filipino children. Am J Trop Med Hyg 72: 540548.
    [Google Scholar]
  6. Davies C, 1973. Physiological responses to exercise in east African children. II. The effects of schistosomiasis, anaemia and malnutrition. J Trop Pediatr Environ Child Health 19: 115119.
    [Google Scholar]
  7. Hürlimann E, Houngbedji CA, Prisca BN, Bänninger D, Coulibaly JT, Yap P, Silué KD, N’Goran EK, Raso G, Utzinger J, 2014. Effect of deworming on school-aged children’s physical fitness, cognition and clinical parameters in a malaria-helminth co-endemic area of Côte d’Ivoire. BMC Infect Dis 14: 411.
    [Google Scholar]
  8. Müller I, Coulibaly JT, Fürst T, Knopp S, Hattendorf J, Krauth SJ, Stete K, Righetti AA, Glinz D, Yao AK, 2011. Effect of schistosomiasis and soil-transmitted helminth infections on physical fitness of school children in Côte d’Ivoire. PLoS Negl Trop Dis 5: e1239.
    [Google Scholar]
  9. Samuels AM, Matey E, Mwinzi PN, Wiegand RE, Muchiri G, Ireri E, Hyde M, Montgomery SP, Karanja DM, Secor WE, 2012. Schistosoma mansoni morbidity among school-aged children: a SCORE project in Kenya. Am J Trop Med Hyg 87: 874882.
    [Google Scholar]
  10. Ndamba J, 1986. Schistosomiasis: its effects on the physical performance of school children in Zimbabwe. Cent Afr J Med 32: 289293.
    [Google Scholar]
  11. Leger LA, Mercier D, Gadoury C, Lambert J, 1988. The multistage 20 metre shuttle run test for aerobic fitness. J Sports Sci 6: 93101.
    [Google Scholar]
  12. Stothard JR, Stanton MC, Bustinduy AL, Sousa-Figueiredo JC, Van Dam GJ, Betson M, Waterhouse D, Ward S, Allan F, Hassan AA, 2014. Diagnostics for schistosomiasis in Africa and Arabia: a review of present options in control and future needs for elimination. Parasitology 141: 19471961.
    [Google Scholar]
  13. King CH, Dangerfield-Cha M, 2008. The unacknowledged impact of chronic schistosomiasis. Chronic Illn 4: 6579.
    [Google Scholar]
  14. King CH, 2011. Schistosomiasis: challenges and opportunities. Institute of Medicine (US) Forum on Microbial Threats. The Causes and Impacts of Neglected Tropical and Zoonotic Diseases: Opportunities for Integrated Intervention Strategies. Washington, DC: National Academies Press.
    [Google Scholar]
  15. Bar-Or O, 1986. Pathophysiological factors which limit the exercise capacity of the sick child. Med Sci Sports Exerc 18: 276282.
    [Google Scholar]
  16. Chami GF, Fenwick A, Bulte E, Kontoleon AA, Kabatereine NB, Tukahebwa EM, Dunne DW, 2015. Influence of Schistosoma mansoni and hookworm infection intensities on anaemia in Ugandan villages. PLoS Negl Trop Dis 9: e0004193.
    [Google Scholar]
  17. Friedman JF, Kanzaria HK, McGarvey ST, 2005. Human schistosomiasis and anemia: the relationship and potential mechanisms. Trends Parasitol 21: 386392.
    [Google Scholar]
  18. Koukounari A, Fenwick A, Whawell S, Kabatereine NB, Kazibwe F, Tukahebwa EM, Stothard JR, Donnelly CA, Webster JP, 2006. Morbidity indicators of Schistosoma mansoni: relationship between infection and anemia in Ugandan schoolchildren before and after praziquantel and albendazole chemotherapy. Am J Trop Med Hyg 75: 278286.
    [Google Scholar]
  19. Matangila JR, Doua JY, Linsuke S, Madinga J, da Luz RI, Van Geertruyden J-P, Lutumba P, 2014. Malaria, schistosomiasis and soil transmitted helminth burden and their correlation with anemia in children attending primary schools in Kinshasa, Democratic Republic of Congo. PLoS One 9: e110789.
    [Google Scholar]
  20. Koukounari A, Estambale BB, Njagi JK, Cundill B, Ajanga A, Crudder C, Otido J, Jukes MC, Clarke SE, Brooker S, 2008. Relationships between anaemia and parasitic infections in Kenyan schoolchildren: a Bayesian hierarchical modelling approach. Int J Parasitol 38: 16631671.
    [Google Scholar]
  21. Leenstra T, Acosta LP, Langdon GC, Manalo DL, Su L, Olveda RM, McGarvey ST, Kurtis JD, Friedman JF, 2006. Schistosomiasis japonica, anemia, and iron status in children, adolescents, and young adults in Leyte, Philippines. Am J Clin Nutr 83: 371379.
    [Google Scholar]
  22. Booth M et al., 2004. Periportal fibrosis in human Schistosoma mansoni infection is associated with low IL-10, low IFN-γ, high TNF-α, or low RANTES, depending on age and gender. J Immunol 172: 12951303.
    [Google Scholar]
  23. Coutinho HM et al., 2005. Nutritional status and serum cytokine profiles in children, adolescents, and young adults with Schistosoma japonicum-associated hepatic fibrosis, in Leyte, Philippines. J Infect Dis 192: 528536.
    [Google Scholar]
  24. Butler SE, Muok EM, Montgomery SP, Odhiambo K, Mwinzi PM, Secor WE, Karanja DM, 2012. Mechanism of anemia in Schistosoma mansoni-infected school children in western Kenya. Am J Trop Med Hyg 87: 862867.
    [Google Scholar]
  25. Kanzaria HK, Acosta LP, Langdon GC, Manalo DL, Olveda RM, McGarvey ST, Kurtis JD, Friedman JF, 2005. Schistosoma japonicum and occult blood loss in endemic villages in Leyte, the Philippines. Am J Trop Med Hyg 72: 115118.
    [Google Scholar]
  26. Friedman JF, Kanzaria HK, Acosta LP, Langdon GC, Manalo DL, Wu H, Olveda RM, McGarvey ST, Kurtis JD, 2005. Relationship between Schistosoma japonicum and nutritional status among children and young adults in Leyte, the Philippines. Am J Trop Med Hyg 72: 527533.
    [Google Scholar]
  27. Al-Shehri H, Stanton MC, LaCourse JE, Atuhaire A, Arinaitwe M, Wamboko A, Adriko M, Kabatereine NB, Stothard JR, 2016. An extensive burden of giardiasis associated with intestinal schistosomiasis and anaemia in school children on the shoreline of Lake Albert, Uganda. Trans R Soc Trop Med Hyg 110: 597603.
    [Google Scholar]
  28. WHO, 2006. Preventive Chemotherapy in Human Helminthiasis: Coordinated Use of Anthelminthic Drugs in Control Interventions: A Manual for Health Professionals and Programme Managers. Geneva, Switzerland: WHO Press, World Health Organization, 174.
    [Google Scholar]
  29. Bustinduy AL, Sousa-Figueiredo JC, Adriko M, Betson M, Fenwick A, Kabatereine N, Stothard JR, 2013. Sonographic response in the liver and urinary bladder of children 14 months after treatment for schistosomiasis. Tropical Doctor 43: 7174.
    [Google Scholar]
  30. Strahan R, McAdam D, Schneider M, 2013. Sonographic response in the liver and urinary bladder of children 14 months after treatment for schistosomiasis. Tropical Doctor 43: 7174.
    [Google Scholar]
  31. Bärtsch P, Saltin B, 2008. General introduction to altitude adaptation and mountain sickness. Scandinavian Journal of Medicine & Science in Sports 18: 110.
    [Google Scholar]
  32. Al-Shehri H, Koukounari A, Stanton MC, Adriko M, Arinaitwe M, Atuhaire A, Kabatereine NB, Stothard JR, 2018. Surveillance of intestinal schistosomiasis during control: a comparison of four diagnostic tests across five Ugandan primary schools in the Lake Albert region. Parasitology 145: 17151722.
    [Google Scholar]
  33. Kabatereine NB, Brooker S, Koukounari A, Kazibwe F, Tukahebwa EM, Fleming FM, Zhang Y, Webster JP, Stothard JR, Fenwick A, 2007. Impact of a national helminth control programme on infection and morbidity in Ugandan schoolchildren. Bull World Health Organ 85: 9199.
    [Google Scholar]
  34. Kabatereine NB, Brooker S, Tukahebwa EM, Kazibwe F, Onapa AW, 2004. Epidemiology and geography of Schistosoma mansoni in Uganda: implications for planning control. Trop Med Int Health 9: 372380.
    [Google Scholar]
  35. Chanyarungrojn PA, Lelijveld N, Carmpin A, Geis S, Nyirenda M, Kerac M, 2017. Evaluating the Use of a Novel Wallchart Tool to Identify Stunted Adolescents in Malawi. As presented by Chanyarungrojn PA at RSTMH Research in Progress 2016, London, UK, Nutrition and Growth Conference 2017, Amsterdam, The Netherlands, and ACF Research for Nutrition Conference 2017, Paris, France, December 5, 2017.
  36. WHO, 2007. Growth Reference Data for 5–19 Years. Available at: https://www.who.int/growthref/en/. Accessed December 1, 2018.
  37. Bärenbold O et al., 2018. Translating preventive chemotherapy prevalence thresholds for Schistosoma mansoni from the Kato-Katz technique into the point-of-care circulating cathodic antigen diagnostic test. PLoS Negl Trop Dis 12: e0006941.
    [Google Scholar]
  38. Katz N, Chaves A, Pellegrino J, 1972. A simple device for quantitative stool thick-smear technique in schistosomiasis mansoni. Rev Inst Med Trop Sao Paulo 14: 397400.
    [Google Scholar]
  39. Sullivan KM, Mei Z, Grummer‐Strawn L, Parvanta I, 2008. Haemoglobin adjustments to define anaemia. Trop Med Int Health 13: 12671271.
    [Google Scholar]
  40. King CH, 2015. It’s time to dispel the myth of “asymptomatic” schistosomiasis. PLoS Negl Trop Dis 9: e0003504.
    [Google Scholar]
  41. Van Lieshout L, Polderman A, Deelder A, 2000. Immunodiagnosis of schistosomiasis by determination of the circulating antigens CAA and CCA, in particular in individuals with recent or light infections. Acta Trop 77: 6980.
    [Google Scholar]
  42. Betson M, Sousa-Figueiredo JC, Kabatereine NB, Stothard JR, 2012. Use of fecal occult blood tests as epidemiologic indicators of morbidity associated with intestinal schistosomiasis during preventive chemotherapy in young children. Am J Trop Med Hyg 87: 694700.
    [Google Scholar]
  43. Ndamba J, Makaza N, Munjoma M, Gomo E, Kaondera KC, 1993. The physical fitness and work performance of agricultural workers infected with Schistosoma mansoni in Zimbabwe. Ann Trop Med Parasitol 87: 553561.
    [Google Scholar]
  44. Gurarie D, Wang X, Bustinduy AL, King CH, 2011. Modeling the effect of chronic schistosomiasis on childhood development and the potential for catch-up growth with different drug treatment strategies promoted for control of endemic schistosomiasis. Am J Trop Med Hyg 84: 773781.
    [Google Scholar]
  45. Gall S et al., 2017. Associations between selective attention and soil-transmitted helminth infections, socioeconomic status, and physical fitness in disadvantaged children in Port Elizabeth, South Africa: an observational study. PLoS Negl Trop Dis 11: e0005573.
    [Google Scholar]
  46. Ezeamama AE, McGarvey ST, Acosta LP, Zierler S, Manalo DL, Wu H-W, Kurtis JD, Mor V, Olveda RM, Friedman JF, 2008. The synergistic effect of concomitant schistosomiasis, hookworm, and trichuris infections on children’s anemia burden. PLoS Negl Trop Dis 2: e245.
    [Google Scholar]
  47. Windsor JS, Rodway GW, 2007. Heights and haematology: the story of haemoglobin at altitude. Postgrad Med J 83: 148151.
    [Google Scholar]
  48. Stray-Gundersen J, Chapman RF, Levine BD, 2001. “Living high-training low” altitude training improves sea level performance in male and female elite runners. J Appl Physiol (1985) 91: 11131120.
    [Google Scholar]
  49. Brown JPR, Grocott MPW, 2013. Humans at altitude: physiology and pathophysiology. Contin Educ Anaesth Crit Care Pain 13: 1722.
    [Google Scholar]
  50. John R, Ezekiel M, Philbert C, Andrew A, 2008. Schistosomiasis transmission at high altitude crater lakes in western Uganda. BMC Infect Dis 8: 110.
    [Google Scholar]
  51. Stanton MC, Adriko M, Arinaitwe M, Howell A, Davies J, Allison G, LaCourse EJ, Muheki E, Kabatereine NB, Stothard JR, 2017. Intestinal schistosomiasis in Uganda at high altitude (> 1400 m): malacological and epidemiological surveys on Mount Elgon and in Fort Portal crater lakes reveal extra preventive chemotherapy needs. Infect Dis Poverty 6: 34.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.18-0922
Loading
/content/journals/10.4269/ajtmh.18-0922
Loading

Data & Media loading...

Supplemental tables and figure

  • Received : 19 Nov 2018
  • Accepted : 19 Feb 2019
  • Published online : 15 Apr 2019
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error