1921
Volume 99, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645
Preview this article:
Zoom in
Zoomout

Artemisinin Resistance Outside of Southeast Asia, Page 1 of 1

| /docserver/preview/fulltext/14761645/99/6/tpmd180845-1.gif

There is no abstract available for this article.
Use the preview function to the left.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.18-0845
2018-12-05
2018-12-15
Loading full text...

Full text loading...

/deliver/fulltext/14761645/99/6/tpmd180845.html?itemId=/content/journals/10.4269/ajtmh.18-0845&mimeType=html&fmt=ahah

References

  1. Fairhurst RM, Dondorp AM, , 2016. Artemisinin-resistant Plasmodium falciparum malaria. Microbiol Spectr 4: E110-0013-2016. [Google Scholar]
  2. Ashley EA, Tracking Resistance to Artemisinin Collaboration (TRAC) , 2014. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 371: 411423. [Google Scholar]
  3. Menard D, KARMA Consortium , 2016. A worldwide map of Plasmodium falciparum K13-propeller polymorphisms. N Engl J Med 374: 24532464. [Google Scholar]
  4. Mita T, 2016. Little polymorphism at the K13 propeller locus in worldwide Plasmodium falciparum populations prior to the introduction of artemisinin combination therapies. Antimicrob Agents Chemother 60: 33403347. [Google Scholar]
  5. Imwong M, 2017. The spread of artemisinin-resistant Plasmodium falciparum in the Greater Mekong subregion: a molecular epidemiology observational study. Lancet Infect Dis 17: 491497. [Google Scholar]
  6. WWARN K13 Genotype-Phenotype Study Group, 2018. Association of mutations in the Plasmodium falciparum Kelch13 gene (Pf3D7_1343700) with parasite clearance rates after artemisinin-based treatments—a WWARN individual patient data meta-analysis. BMC Med (In press). [Google Scholar]
  7. Inoue J, Jovel I, Morris U, Aydin-Schmidt B, Islam A, Segurado AC, Bjorkman A, Di Santi S, Martensson A, , 2018. Absence of Plasmodium falciparum K13 propeller domain polymorphisms among field isolates collected from the Brazilian Amazon basin between 1984 and 2011. Am J Trop Med Hyg 99: 15041507. [Google Scholar]
  8. Wedam J, 2018. Molecular evidence for Plasmodium falciparum resistance to sulfadoxine-pyrimethamine but absence of K13 mutations in Mangaluru, southwestern India. Am J Trop Med Hyg 99: 15081510. [Google Scholar]
  9. Ladeia-Andrade S, de Melo GN, de Souza-Lima Rde C, Salla LC, Bastos MS, Rodrigues PT, Luz Fd, Ferreira MU, , 2016. No clinical or molecular evidence of Plasmodium falciparum resistance to artesunate-mefloquine in northwestern Brazil. Am J Trop Med Hyg 95: 148154. [Google Scholar]
  10. Gomes LR, Lavigne A, Peterka CL, Brasil P, Menard D, Tadeu Daniel-Ribeiro CT, Ferreira-da-Cruz MF, , 2018. Absence of K13 polymorphism in Plasmodium falciparum parasites from Brazilian endemic areas. Antimicrob Agents Chemother 62: e00354-18. [Google Scholar]
  11. Montenegro M, Neal AT, Posada M, De Las Salas B, Lopera-Mesa TM, Fairhurst RM, Tobon-Castano A, , 2017. K13 propeller alleles, mdr1 polymorphism, and drug effectiveness at day 3 after artemether-lumefantrine treatment for Plasmodium falciparum malaria in Colombia, 2014–2015. Antimicrob Agents Chemother 61: e01036-17. [Google Scholar]
  12. Chenet SM, Okoth SA, Kelley J, Lucchi N, Huber CS, Vreden S, Macedo de Oliveira A, Barnwell JW, Udhayakumar V, Adhin MR, , 2017. Molecular profile of malaria drug resistance markers of Plasmodium falciparum in Suriname. Antimicrob Agents Chemother 61: e02655-16. [Google Scholar]
  13. Chenet SM, 2016. Independent emergence of the Plasmodium falciparum Kelch propeller domain mutant allele C580Y in Guyana. J Infect Dis 213: 14721475. [Google Scholar]
  14. Chatterjee M, Ganguly S, Saha P, Bankura B, Basu N, Das M, Guha SK, Maji AK, , 2015. No polymorphism in Plasmodium falciparum K13 propeller gene in clinical isolates from Kolkata, India. J Pathog 2015: 374354. [Google Scholar]
  15. Mishra N, Bharti RS, Mallick P, Singh OP, Srivastava B, Rana R, Phookan S, Gupta HP, Ringwald P, Valecha N, , 2016. Emerging polymorphisms in falciparum Kelch 13 gene in northeastern region of India. Malar J 15: 583. [Google Scholar]
  16. Mishra S, Bharti PK, Shukla MM, Ali NA, Kashyotia SS, Kumar A, Dhariwal AC, Singh N, , 2017. Clinical and molecular monitoring of Plasmodium falciparum resistance to antimalarial drug (artesunate + sulphadoxine-pyrimethamine) in two highly malarious district of Madhya Pradesh, central India from 2012–2014. Pathog Glob Health 111: 186194. [Google Scholar]
  17. Mohon AN, Alam MS, Bayih AG, Folefoc A, Shahinas D, Haque R, Pillai DR, , 2014. Mutations in Plasmodium falciparum K13 propeller gene from Bangladesh (2009–2013). Malar J 13: 431. [Google Scholar]
  18. Poespoprodjo JR, 2018. Therapeutic response to dihydroartemisinin-piperaquine for P. falciparum and P. vivax nine years after its introduction in southern Papua, Indonesia. Am J Trop Med Hyg 98: 677682. [Google Scholar]
  19. Norahmad NA, 2016. Prevalence of Plasmodium falciparum molecular markers of antimalarial drug resistance in a residual malaria focus area in Sabah, Malaysia. PLoS One 11: e0165515. [Google Scholar]
  20. Awab GR, Imwong M, Pukrittayakamee S, Alim F, Hanpithakpong W, Tarning J, Dondorp AM, Day NP, White NJ, Woodrow CJ, , 2016. Clinical trials of artesunate plus sulfadoxine-pyrimethamine for Plasmodium falciparum malaria in Afghanistan: maintained efficacy a decade after introduction. Malar J 15: 121. [Google Scholar]
  21. West African Network for Clinical Trials of Antimalarial Drugs (WANECAM), 2018. Pyronaridine-artesunate or dihydroartemisinin-piperaquine versus current first-line therapies for repeated treatment of uncomplicated malaria: a randomised, multicentre, open-label, longitudinal, controlled, phase 3b/4 trial. Lancet 391: 13781390. [Google Scholar]
  22. Cooper RA, Conrad MD, Watson QD, Huezo SJ, Ninsiima H, Tumwebaze P, Nsobya SL, Rosenthal PJ, , 2015. Lack of artemisinin resistance in Plasmodium falciparum in Uganda based on parasitological and molecular assays. Antimicrob Agents Chemother 59: 50615064. [Google Scholar]
  23. Taylor SM, 2015. Absence of putative artemisinin resistance mutations among Plasmodium falciparum in sub-Saharan Africa: a molecular epidemiologic study. J Infect Dis 211: 680688. [Google Scholar]
  24. Kamau E, 2015. K13-propeller polymorphisms in Plasmodium falciparum parasites from sub-Saharan Africa. J Infect Dis 211: 13521355. [Google Scholar]
  25. Hawkes M, Conroy AL, Opoka RO, Namasopo S, Zhong K, Liles WC, John CC, Kain KC, , 2015. Slow clearance of Plasmodium falciparum in severe pediatric malaria, Uganda, 2011–2013. Emerg Infect Dis 21: 12371239. [Google Scholar]
  26. Ikeda M, 2018. Artemisinin-resistant Plasmodium falciparum with high survival rates, Uganda, 2014–2016. Emerg Infect Dis 24: 718726. [Google Scholar]
  27. Asua V, Vinden J, Conrad ML, Legac J, Kigozi SP, Kamya MR, Dorsey G, Nsobya SL, Rosenthal PJ, . Changing markers of antimalarial drug sensitivity across Uganda. Antimicrob Agents Chemother (In press). [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.18-0845
Loading
  • Received : 15 Oct 2018
  • Accepted : 24 Oct 2018

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error