1921
Volume 100, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Fascioliasis, caused by and infection, is a major food-borne trematodiasis in many places of the world, with the central region of Vietnam being reported as a highly endemic area. Stool examination for eggs is not a sensitive method, and immunodiagnostic methods are preferable. We investigated various enzyme-linked immunosorbent assays (ELISAs) to evaluate their efficacy for fascioliasis diagnosis. Test sera used are primarily screened using an ELISA kit produced in Vietnam (VN kit; Viet Sinh Chemical Producing & Trading Co. Ltd., Ho Chi Minh City, Vietnam): Seropositive individuals having symptoms compatible with fascioliasis were regarded as clinically diagnosed fascioliasis cases. A commercial IgG ELISA kit from Diagnostic Automation/Cortez Diagnostics, Inc. (USA kit; Woodland Hills, CA), which has been commonly used in Vietnam, was assessed and compared with in-house ELISA systems, including a cystatin-capture (CC) ELISA using crude worm extract (CWE) and an indirect ELISA using a synthetic peptide Ac-TPTCHWECQVGYNKTYDEE-NHMe designed from the cathepsin B (FgCB5) molecule. The USA kit was suitable for routine diagnosis after recalibration of the manufacturer’s suggested cutoff point. Cystatin-capture ELISA with CWE provided good sensitivity and specificity with perfect agreement to the results of the USA kit. In dot-blot ELISA, recombinant FgCB5 reacted more strongly with human antisera than did other antigens tested. Enzyme-linked immunosorbent assay using the synthetic peptide fragment of the FgCB5 exhibited nearly 80% sensitivity and specificity, but the test results showed low agreement with CC-ELISA or the USA kit. In conclusion, the commercially available IgG ELISA kit from the United States and the in-house CC ELISA using CWE are suitable for practical diagnosis for fascioliasis.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.18-0833
2019-01-21
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/14761645/100/3/tpmd180833.html?itemId=/content/journals/10.4269/ajtmh.18-0833&mimeType=html&fmt=ahah

References

  1. World Health Organization (WHO) Ntd, 2018. Human Fascioliasis: Review Provides Fresh Perspectives on Infection and Control. Available at: http://www.who.int/neglected_diseases/news/fascioliasis-review-provides-new-perspectives-infection-control/en/. Accessed September 10, 2018.
  2. Mas-Coma S, Valero MA, Bargues MD, , 2009. Chapter 2. Fasciola, lymnaeids and human fascioliasis, with a global overview on disease transmission, epidemiology, evolutionary genetics, molecular epidemiology and control. Adv Parasitol 69: 41146. [Google Scholar]
  3. Bui TD, Doanh PN, Saegerman C, Losson B, , 2016. Current status of fasciolosis in Vietnam: an update and perspectives. J Helminthol 90: 511522. [Google Scholar]
  4. Mas-Coma S, Bargues MD, Valero MA, , 2018. Human fascioliasis infection sources, their diversity, incidence factors, analytical methods and prevention measures. Parasitology 145: 16651699. [Google Scholar]
  5. World Health Organization (WHO), 2018. Foodborne Trematode Infections. Fascioliasis. Fascioliasis Diagnosis, Treatment and Control Strategy. Available at: http://www.who.int/foodborne_trematode_infections/fascioliasis/fascioliasis_diagnosis/en/. Accessed November 19, 2018.
  6. Smooker PM, Jayaraj R, Pike RN, Spithill TW, , 2010. Cathepsin B proteases of flukes: the key to facilitating parasite control? Trends Parasitol 26: 506514. [Google Scholar]
  7. Robinson MW, Menon R, Donnelly SM, Dalton JP, Ranganathan S, , 2009. An integrated transcriptomics and proteomics analysis of the secretome of the helminth pathogen Fasciola hepatica: proteins associated with invasion and infection of the mammalian host. Mol Cell Proteomics 8: 18911907. [Google Scholar]
  8. Rojas-Caraballo J, López-Abán J, Del Villar LP, Vizcaíno C, Vicente B, Fernández-Soto P, Del Olmo E, Patarroyo MA, Muro A, , 2014. In vitro and in vivo studies for assessing the immune response and protection-inducing ability conferred by Fasciola hepatica-derived synthetic peptides containing B-and T-cell epitopes. PLoS One 9: e105323. [Google Scholar]
  9. Rokni MB, Massoud J, Hanilo A, , 2003. Comparison of adult somatic and cysteine proteinase antigens of Fasciola gigantica in enzyme linked immunosorbent assay for serodiagnosis of human fasciolosis. Acta Trop 88: 6975. [Google Scholar]
  10. Ikeda T, , 1998. Cystatin capture enzyme-linked immunosorbent assay for immunodiagnosis of human paragonimiasis and fascioliasis. Am J Trop Med Hyg 59: 286290. [Google Scholar]
  11. Meshgi B, Jalousian F, Fathi S, Jahani Z, , 2018. Design and synthesis of a new peptide derived from Fasciola gigantica cathepsin L1 with potential application in serodiagnosis of fascioliasis. Exp Parasitol 189: 7686. [Google Scholar]
  12. Santana BG, Dalton JP, Camargo FV, Parkinson M, Ndao M, , 2013. The diagnosis of human fascioliasis by enzyme-linked immunosorbent assay (ELISA) using recombinant cathepsin L protease. PLoS Negl Trop Dis 7: e2414. [Google Scholar]
  13. Tantrawatpan C, Maleewong W, Wongkham C, Wongkham S, Intapan PM, Nakashima K, , 2005. Serodiagnosis of human fascioliasis by a cystatin capture enzyme-linked immunosorbent assay with recombinant Fasciola gigantica cathepsin L antigen. Am J Trop Med Hyg 72: 8286. [Google Scholar]
  14. Intapan PM, Tantrawatpan C, Maleewong W, Wongkham S, Wongkham C, Nakashima K, , 2005. Potent epitopes derived from Fasciola gigantica cathepsin L1 in peptide-based immunoassay for the serodiagnosis of human fascioliasis. Diagn Microbiol Infect Dis 53: 125129. [Google Scholar]
  15. O'Neill SM, Parkinson M, Dowd AJ, Strauss W, Angles R, Dalton JP, , 1999. Immunodiagnosis of human fascioliasis using recombinant Fasciola hepatica cathepsin L1 cysteine proteinase. Am J Trop Med Hyg 60: 749751. [Google Scholar]
  16. Creaney J, Wilson L, Dosen M, Sandeman RM, Spithill TW, Parsons JC, , 1996. Fasciola hepatica: irradiation-induced alterations in carbohydrate and cathepsin-B protease expression in newly excysted juvenile liver fluke. Exp Parasitol 83: 202215. [Google Scholar]
  17. Law RH, Smooker PM, Irving JA, Piedrafita D, Ponting R, Kennedy NJ, Whisstock JC, Pike RN, Spithill TW, , 2003. Cloning and expression of the major secreted cathepsin B-like protein from juvenile Fasciola hepatica and analysis of immunogenicity following liver fluke infection. Infect Immun 71: 69216932. [Google Scholar]
  18. Meemon K, Grams R, Vichasri-Grams S, Hofmann A, Korge G, Viyanant V, Upatham ES, Habe S, Sobhon P, , 2004. Molecular cloning and analysis of stage and tissue-specific expression of cathepsin B encoding genes from Fasciola gigantica. Mol Biochem Parasitol 136: 110. [Google Scholar]
  19. Siricoon S, Vichasri Grams S, Lertwongvisarn K, Abdullohfakeeyah M, Smooker PM, Grams R, , 2015. Fasciola gigantica cathepsin B5 is an acidic endo- and exopeptidase of the immature and mature parasite. Biochimie 119: 615. [Google Scholar]
  20. Quy TM, Yeatman H, Flood V, Chuong NC, Tuan BV, , 2015. Prevalence and risks of fascioliasis among adult cohorts in Binh Dinh and Quang Ngai provinces-central Viet Nam. Vietnam J Public Health 3: 4661. [Google Scholar]
  21. Huong NT, Duong TD, Tinh TT, , 2013. Human Fasciola sp infection in community Nghe an province and comparison of an antibody ELISA detection for serodiagnosis of fascioliasis (in Vietnamese, English abstract). J Vietnam Pract Med 11: 156160. [Google Scholar]
  22. Duong TD, Huong NT, Tinh TT, , 2013. Research applicated the technical standards in diagnostic human fascioliasis in hospital of the national institute of malariology, parasitology and entomology (2011–2013) (in Vietnamese, English abstract). J Vietnam Pract Med 11: 6771. [Google Scholar]
  23. Van De N, Thi Xuan L, Van Chau L, , 2003. Prevalence of first survey of human fasciloliasis in Khanh Hoa province, Vietnam (in Vietnamese). J Vietnam Pract Med 3: 7780. [Google Scholar]
  24. Periago MV, Valero MA, El Sayed M, Ashrafi K, El Wakeel A, Mohamed MY, Desquesnes M, Curtale F, Mas-Coma S, , 2008. First phenotypic description of Fasciola hepatica/Fasciola gigantica intermediate forms from the human endemic area of the Nile Delta, Egypt. Infect Genet Evol 8: 5158. [Google Scholar]
  25. Itagaki T, Kikawa M, Sakaguchi K, Shimo J, Terasaki K, Shibahara T, Fukuda K, , 2005. Genetic characterization of parthenogenic Fasciola sp. in Japan on the basis of the sequences of ribosomal and mitochondrial DNA. Parasitology 131: 679685. [Google Scholar]
  26. McVeigh P, 2014. RNAi dynamics in Juvenile Fasciola spp. Liver flukes reveals the persistence of gene silencing in vitro. PLoS Negl Trop Dis 8: e3185. [Google Scholar]
  27. Walker JM, Walker JM, , 1994. The bicinchoninic acid (BCA) assay for protein quantitation. , ed. Basic Protein and Peptide Protocols. Totowa, NJ: Humana Press, 58. [Google Scholar]
  28. Phadungsil W, Smooker PM, Vichasri-Grams S, Grams R, , 2016. Characterization of a Fasciola gigantica protein carrying two DM9 domains reveals cellular relocalization property. Mol Biochem Parasitol 205: 615. [Google Scholar]
  29. Geadkaew A, Kosa N, Siricoon S, Grams SV, Grams R, , 2014. A 170 kDa multi-domain cystatin of Fasciola gigantica is active in the male reproductive system. Mol Biochem Parasitol 196: 100107. [Google Scholar]
  30. Siricoon S, Grams SV, Grams R, , 2012. Efficient inhibition of cathepsin B by a secreted type 1 cystatin of Fasciola gigantica. Mol Biochem Parasitol 186: 126133. [Google Scholar]
  31. Tarasuk M, Grams SV, Viyanant V, Grams R, , 2009. Type I cystatin (stefin) is a major component of Fasciola gigantica excretion/secretion product. Mol Biochem Parasitol 167: 6071. [Google Scholar]
  32. Vichasri-Grams S, Subpipattana P, Sobhon P, Viyanant V, Grams R, , 2006. An analysis of the calcium-binding protein 1 of Fasciola gigantica with a comparison to its homologs in the phylum Platyhelminthes. Mol Biochem Parasitol 146: 1023. [Google Scholar]
  33. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, , 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46: W296W303. [Google Scholar]
  34. Mirkovic B, Premzl A, Hodnik V, Doljak B, Jevnikar Z, Anderluh G, Kos J, , 2009. Regulation of cathepsin B activity by 2A2 monoclonal antibody. FEBS J 276: 47394751. [Google Scholar]
  35. Jespersen MC, Peters B, Nielsen M, Marcatili P, , 2017. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res 45: W24W29. [Google Scholar]
  36. Nguyen S, Amer S, Ichikawa M, Itagaki T, Fukuda Y, Nakai Y, , 2012. Molecular identification of Fasciola spp. (digenea: platyhelminthes) in cattle from Vietnam. Parasite 19: 8589. [Google Scholar]
  37. Fica A, Dabanch J, Farias C, Castro M, Jercic MI, Weitzel T, , 2012. Acute fascioliasis—clinical and epidemiological features of four patients in Chile. Clin Microbiol Infect 18: 9196. [Google Scholar]
  38. Weisenberg SA, Perlada DE, , 2013. Domestically acquired fascioliasis in northern California. Am J Trop Med Hyg 89: 588591. [Google Scholar]
  39. Maleewong W, Intapan PM, Wongkham C, Tomanakan K, Daenseekaew W, Sukeepaisarnjaroen W, , 1996. Comparison of adult somatic and excretory-secretory antigens in enzyme-linked immunosorbent assay for serodiagnosis of human infection with Fasciola gigantica. Southeast Asian J Trop Med Public Health 27: 566569. [Google Scholar]
  40. Musil D, 1991. The refined 2.15 A X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J 10: 23212330. [Google Scholar]
  41. Rokni M, Gharavi M, , 2002. Evaluation of a pre-selected epitope of Fasciola hepatica cathepsin-L1 for the diagnosis of human fasciolosis by IgG-ELISA test. Iran J Public Health 31: 8082. [Google Scholar]
  42. Adela Valero M, Victoria Periago M, Pérez‐Crespo I, Rodríguez E, Jesús Perteguer M, Gárate T, González‐Barberá EM, Mas‐Coma S, , 2012. Assessing the validity of an ELISA test for the serological diagnosis of human fascioliasis in different epidemiological situations. Trop Med Int Health 17: 630636. [Google Scholar]
  43. Fargeas C, Hommel M, Maingon R, Dourado C, Monsigny M, Mayer R, , 1996. Synthetic peptide-based enzyme-linked immunosorbent assay for serodiagnosis of visceral leishmaniasis. J Clin Microbiol 34: 241248. [Google Scholar]
  44. Mas-Coma S, Bargues MD, Valero MA, , 2014. Diagnosis of human fascioliasis by stool and blood techniques: update for the present global scenario. Parasitology 141: 19181946. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.18-0833
Loading
/content/journals/10.4269/ajtmh.18-0833
Loading

Data & Media loading...

Supplemental Data

  • Received : 18 Oct 2018
  • Accepted : 26 Nov 2018
  • Published online : 21 Jan 2019

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error