Volume 100, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



is a digenetic blood fluke that has been implicated in the carcinogenesis of several human malignancies, notably liver and colorectal cancer (CRC). –associated colorectal cancer (SACC) is a distinct subtype with biological behavior analogous to colitis-induced CRC. The clinicopathological characteristics of SACC include young age at diagnosis, predominance among males, a strong predilection for the sigmoid colon and rectum, multifocal distribution, frequent mucinous histology, and poor prognosis. In addition to chronic inflammation, immunomodulation, and schistosomal toxins, bacterial coinfection appears to play an important role in the carcinogenic process. The present review provides the most recent updates on epidemiology, pathobiology, and clinical and prognostic features pertaining to SACC.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F, , 2015. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136: E359E386. [Google Scholar]
  2. Brenner H, Kloor M, Pox CP, , 2014. Colorectal cancer. Lancet 26: 14901502. [Google Scholar]
  3. Collins D, Hogan AM, Winter DC, , 2011. Microbial and viral pathogens in colorectal cancer. Lancet Oncol 12: 504512. [Google Scholar]
  4. Plummer M, de Martel C, Vignat J, Ferlay J, Bray F, Franceschi S, , 2016. Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob Health 4: e609e616. [Google Scholar]
  5. IARC, IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 1994. Infection with schistosomes, liver flukes and Helicobacter pylori. IARC Monogr Eval Carcinog Risks Hum 61: 45119. [Google Scholar]
  6. Hamid HKS, Mustafa YM, Ettarh R, , 2012. The role of infectious agents in colorectal carcinogenesis. , ed. Colorectal Cancer Biology–From Genes to Tumor. Rijeka, Croatia: INTECH Publisher, 341374. [Google Scholar]
  7. Ishii A, Matsuoka H, Aji T, Ohta N, Arimoto S, Wataya Y, Hayatsu H, , 1994. Parasite infection and cancer: with special emphasis on Schistosoma japonicum infections (Trematoda). A review. Mutat Res 305: 273281. [Google Scholar]
  8. Johansen MV, Bogh HO, Nansen P, Christensen NO, , 2000. Schistosoma japonicum infection in the pig as a model for human schistosomiasis japonica. Acta Trop 76: 8599. [Google Scholar]
  9. Zhao ES, , 1981. Cancer of the colon and schistosomiasis. J R Soc Med 74: 645. [Google Scholar]
  10. Xu Z, Su D, , 1984. Schistosoma japonicum and colorectal cancer: an epidemiological study in the People’s Republic of China. Int J Cancer 34: 315318. [Google Scholar]
  11. Chen MG, , 2014. Assessment of morbidity due to Schistosoma japonicum infection in China. Infect Dis Poverty 3: 6. [Google Scholar]
  12. Chen J, Campbell TC, Li J, Peto R, , 1990. Diet, Life-Style, and Mortality in China. A Study of the Characteristics of 65 Chinese Counties. Oxford, United Kingdom: Oxford University Press. [Google Scholar]
  13. Guo W, Zheng W, Li JY, Chen JS, Blot WJ, , 1993. Correlations of colon cancer mortality with dietary factors, serum markers, and schistosomiasis in China. Nutr Cancer 20: 1320. [Google Scholar]
  14. Inaba Y, , 1984. A cohort study on the causes of death in an endemic area of schistosomiasis japonica in Japan. Ann Acad Med Singapore 13: 142148. [Google Scholar]
  15. Mayer DA, Fried B, Muller R, Rollinson D, Hay SI, , 2007. The role of helminth infections in carcinogenesis. , eds. Advances in Parasitology, Vol. 65. London: Academic Press, 239296. [Google Scholar]
  16. Qiu DC, Hubbard AE, Zhong B, Zhang Y, Spear RC, , 2005. A matched, case control study of the association between Schistosoma japonicum and liver and colon cancers, in rural China. Ann Trop Med Parasitol 99: 4752. [Google Scholar]
  17. Ross AG, Bartley PB, Sleigh AC, Olds GR, Li Y, Williams GM, McManus DP, , 2002. Schistosomiasis. N Engl J Med 346: 12121220. [Google Scholar]
  18. Gryseels B, , 2012. Schistosomiasis. Infect Dis Clin North Am 26: 383397. [Google Scholar]
  19. Olveda RM, Mahmoud AA, , 2001. Disease in schistosomiasis japonica. , ed. Schistosomiasis, Vol. 10. London: Emperial College Press, 361389. [Google Scholar]
  20. Willingham AL, 3rd Hurst M, Bøgh HO, Johansen MV, Lindberg R, Christensen NO, Nansen P, , 1998. Schistosoma japonicum in the pig: the host-parasite relationship as influenced by the intensity and duration of experimental infection. Am J Trop Med Hyg 58: 248256. [Google Scholar]
  21. Chen MC, Hu JC, Chang PY, Chuang CY, Tsao PF, Chang SH, Wang FP, Ch’en TL, Chou SC, , 1965. Pathogenesis of carcinoma of the colon and rectum in schistosomiasis japonica: a study on 90 cases. Chin Med J 84: 513525. [Google Scholar]
  22. Ming-Chai C, Chi-Yuan C, Pei-Yu C, Jen-Chun H, , 1980. Evolution of colorectal cancer in schistosomiasis: transitional mucosal changes adjacent to large intestinal carcinoma in colectomy specimens. Cancer 46: 16611675. [Google Scholar]
  23. Matsuda K, Masaki T, Ishii S, Yamashita H, Watanabe T, Nagawa H, Muto T, Hirata Y, Kimura K, Kojima S, , 1999. Possible associations of rectal carcinoma with Schistosoma japonicum infection and membranous nephropathy: a case report with a review. Jpn J Clin Oncol 29: 576578. [Google Scholar]
  24. Chen MC, Chang PY, Chuang CY, Chen YJ, Wang FP, Tang YC, Chou SC, , 1981. Colorectal cancer and schistomiasis. Lancet 1: 971973. [Google Scholar]
  25. Yu XR, Chen PH, Xu JY, Xiao S, Shan ZJ, Zhu SJ, , 1991. Histological classification of schistosomal egg induced polyps of colon and their clinical significance. An analysis of 272 cases. Chin Med J (Engl) 104: 6470. [Google Scholar]
  26. Shindo K, , 1976. Significance of schistosomiasis japonica in the development of cancer of the large intestine: report of a case and review of the literature. Dis Colon Rectum 19: 460469. [Google Scholar]
  27. Liu W, Zeng HZ, Wang QM, Yi H, Mou Y, Wu CC, Hu B, Tang CW, , 2013. Schistosomiasis combined with colorectal carcinoma diagnosed based on endoscopic findings and clinicopathological characteristics: a report on 32 cases. Asian Pac J Cancer Prev 14: 48394842. [Google Scholar]
  28. Ye C, Tan S, Jiang L, Li M, Sun P, Shen L, Luo H, , 2013. Endoscopic characteristics and causes of misdiagnosis of intestinal schistosomiasis. Mol Med Rep 8: 10891093. [Google Scholar]
  29. Cao J, Liu WJ, Xu XY, Zou XP, , 2010. Endoscopic findings and clinicopathologic characteristics of colonic schistosomiasis: a report of 46 cases. World J Gastroenterol 16: 723727. [Google Scholar]
  30. Zhang W, Wang PJ, Shen X, Wang GL, Zhao XH, Seema SF, Zheng SQ, Li MH, , 2012. CT presentations of colorectal cancer with chronic schistosomiasis: a comparative study with pathological findings. Eur J Radiol 81: e835e843. [Google Scholar]
  31. Feng H, Lu AG, Zhao XW, Han DP, Zhao JK, Shi L, Schiergens TS, Lee SM, Zhang WP, Thasler WE, , 2015. Comparison of non-schistosomal rectosigmoid cancer and schistosomal rectosigmoid cancer. World J Gastroenterol 21: 72257232. [Google Scholar]
  32. Lin M, Hanai J, Gui L, , 1998. Peanut lectin-binding sites and mucins in benign and malignant colorectal tissues associated with schistomatosis. Histol Histopathol 13: 961966. [Google Scholar]
  33. Wang M, Zhang YC, Yang XY, Wang ZQ, , 2014. Prognostic analysis of schistosomal rectal cancer. Asian Pac J Cancer Prev 15: 92719275. [Google Scholar]
  34. Wang M, Wu QB, He WB, Wang ZQ, , 2016. Clinicopathological characteristics and prognosis of schistosomal colorectal cancer. Colorectal Dis 18: 10051009. [Google Scholar]
  35. Silla IO, Rueda D, Rodríguez Y, García JL, de la Cruz Vigo F, Perea J, , 2014. Early-onset colorectal cancer: a separate subset of colorectal cancer. World J Gastroenterol 20: 1728817296. [Google Scholar]
  36. Williamson RCN, Rainey JB, , 1984. The relationship between intestinal hyperplasia and carcinogenesis. Scand J Gastroenterol 19: 5776. [Google Scholar]
  37. Herrera LA, Benitez-Bribiesca L, Mohar A, Ostrosky-Wegman P, , 2005. Role of infectious diseases in human carcinogenesis. Environ Mol Mutagen 45: 284303. [Google Scholar]
  38. Trakatelli C, 2005. Chemokines as markers for parasite induced inflammation and tumors. Int J Biol Markers 20: 197203. [Google Scholar]
  39. Rosin MP, Anwar WA, Ward AJ, , 1994. Inflammation, chromosomal instability, and cancer: the schistosomiasis model. Cancer Res 54: 19291933. [Google Scholar]
  40. Long XC, Bahgat M, Chlichlia K, Ruppel A, Li YL, , 2004. Detection of inducible nitric oxide synthase in Schistosoma japonicum and S. mansoni. J Helminthol 78: 4750. [Google Scholar]
  41. Cianchi F, 2003. Inducible nitric oxide synthase expression in human colorectal cancer: correlation with tumour angiogenesis. Am J Pathol 162: 793801. [Google Scholar]
  42. Ambs S, Bennett WP, Merriam WG, Ogunfusika MO, Oser SM, Harrington AM, Shields PG, Felley-Bosco E, Hussain SP, Harris CC, , 1999. Relationship between p53 mutations and inducible nitric oxide synthase expression in human colorectal cancer. J Natl Cancer Inst 91: 8688. [Google Scholar]
  43. Ishii A, Matsuoka H, Aji T, Hayatsu H, Wataya Y, Arimoto S, Tokuda H, , 1989. Evaluation of the mutagenicity and the tumor-promoting activity of parasite extracts: Schistosoma japonicum and Clonorchis sinensis. Mutat Res 224: 229233. [Google Scholar]
  44. Abruzzi A, Fried B, , 2011. Coinfection of Schistosoma (Trematoda) with bacteria, protozoa and helminths. Adv Parasitol 77: 185. [Google Scholar]
  45. Barnhill AE, Novozhilova E, Day TA, Carlson SA, , 2011. Schistosoma-associated Salmonella resist antibiotics via specific fimbrial attachments to the flatworm. Parasit Vectors 4: 123. [Google Scholar]
  46. Hsiao A, Toy T, Seo HJ, Marks F, , 2016. Interaction between Salmonella and schistosomiasis: a review. PLoS Pathog 12: e1005928. [Google Scholar]
  47. Tuazon CU, Nash T, Cheever A, Neva W, Lininger L, , 1986. Influence of Salmonella and other gram-negative bacteria on the survival of mice infected with Schistosoma japonicum. J Infect Dis 154: 179182. [Google Scholar]
  48. Tuazon CU, Nash T, Cheever A, Neva F, , 1985. Interaction of Schistosoma japonicum with Salmonellae and other gram-negative bacteria. J Infect Dis 152: 722726. [Google Scholar]
  49. Melhem RF, LoVerde PT, , 1984. Mechanism of interaction of Salmonella and Schistosoma species. Infect Immun 44: 274281. [Google Scholar]
  50. LoVerde PT, Amento C, Higashi GI, , 1980. Parasite-parasite interaction of Salmonella typhimurium and schistosoma. J Infect Dis 141: 177185. [Google Scholar]
  51. Mughini-Gras L, Schaapveld M, Kramers J, Mooij S, Neefjes-Borst EA, Pelt WV, Neefjes J, , 2018. Increased colon cancer risk after severe Salmonella infection. PLoS One 13: e0189721. [Google Scholar]
  52. Caygill CP, Braddick M, Hill MJ, Knowles RL, Sharp JC, , 1995. The association between typhoid carriage, typhoid infection and subsequent cancer at a number of sites. Eur J Cancer Prev 4: 187193. [Google Scholar]
  53. Scanu T, 2015. Salmonella manipulation of host signaling pathways provokes cellular transformation associated with gallbladder carcinoma. Cell Host Microbe 17: 763774. [Google Scholar]
  54. Lu R, 2014. Enteric bacterial protein AvrA promotes colonic tumorigenesis and activates colonic beta-catenin signaling pathway. Oncogenesis 3: e105. [Google Scholar]
  55. Lu R, Bosland M, Xia Y, Zhang YG, Kato I, Sun J, , 2017. Presence of Salmonella AvrA in colorectal tumor and its precursor lesions in mouse intestine and human specimens. Oncotarget 8: 5510455115. [Google Scholar]
  56. Nath G, Gulati AK, Shukla VK, , 2010. Role of bacteria in carcinogenesis, with special reference to carcinoma of the gallbladder. World J Gastroenterol 16: 53955404. [Google Scholar]
  57. Maizels RM, McSorley HJ, , 2016. Regulation of the host immune system by helminth parasites. J Allergy Clin Immunol 138: 666675. [Google Scholar]
  58. Yang Q, 2017. A Schistosoma japonicum infection promotes the expansion of myeloid-derived suppressor cells by activating the JAK/STAT3 pathway. J Immunol 198: 47164727. [Google Scholar]
  59. Gabrilovich DI, Nagaraj S, , 2009. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9: 162174. [Google Scholar]
  60. Motallebnezhad M, Jadidi-Niaragh F, Qamsari ES, Bagheri S, Gharibi T, Yousefi M, , 2016. The immunobiology of myeloid-derived suppressor cells in cancer. Tumour Biol 37: 13871406. [Google Scholar]
  61. Tang CL, Lei JH, Wang T, Lu SJ, Guan F, Liu WQ, Li YL, , 2011. Effect of CD4+ CD25+ regulatory T cells on the immune evasion of Schistosoma japonicum. Parasitol Res 108: 477480. [Google Scholar]
  62. Nakamura K, Kitani A, Strober W, , 2001. Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 194: 629644. [Google Scholar]
  63. Timperi E, 2016. Regulatory T cells with multiple suppressive and potentially pro-tumor activities accumulate in human colorectal cancer. Oncoimmunology 5: e1175800. [Google Scholar]
  64. Zhang R, Takahashi S, Orita S, Yoshida A, Maruyama H, Shirai T, Ohta N, , 1998. p53 gene mutations in rectal cancer associated with schistosomiasis japonica in Chinese patients. Cancer Lett 131: 215221. [Google Scholar]
  65. Goodman JE, Hofseth LJ, Hussain SP, Harris CC, , 2004. Nitric oxide and p53 in cancer-prone chronic inflammation and oxyradical overload disease. Environ Mol Mutagen 44: 39. [Google Scholar]
  • Received : 06 Oct 2018
  • Accepted : 26 Nov 2018
  • Published online : 17 Dec 2018

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error