Volume 100, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Here we report the first incidence of New Delhi metallo-β-lactamase (NDM-1)–producing in Peru, identified via a strain-based nosocomial surveillance project carried out in Lima and Iquitos. The gene was detected by multiplex polymerase chain reaction (PCR) and confirmed by loci sequencing. is a nearly ubiquitous and promiscuous nosocomial pathogen, and the acquisition of by may facilitate an increase in the prevalence of this important resistance marker in other nosocomial pathogens.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. World Health Organization, 2017. Guidelines for the Prevention and Control of Carbapenem-Resistant Enterobacteriaceae, Acinetobacter baumannii and Pseudomonas aeruginosa in Health Care Facilities. Geneva, Switzerland: WHO. [Google Scholar]
  2. Dortet L, Poirel L, Nordmann P, , 2014. Worldwide dissemination of the NDM-type carbapenemases in gram-negative bacteria. Biomed Res Int 2014: 249856. [Google Scholar]
  3. Molton JS, Tambyah PA, Ang BS, Ling ML, Fisher DA, , 2013. The global spread of healthcare-associated multidrug-resistant bacteria: a perspective from Asia. Clin Infect Dis 56: 13101318. [Google Scholar]
  4. Strysko JP, Mony V, Cleveland J, Siddiqui H, Homel P, Gagliardo C, , 2016. International travel is a risk factor for extended-spectrum β-lactamase-producing Enterobacteriaceae acquisition in children: a case-case-control study in an urban U.S. hospital. Travel Med Infect Dis 14: 568571. [Google Scholar]
  5. Seija V, Medina Presentado JC, Bado I, Papa Ezdra R, Batista N, Gutierrez C, Guirado M, Vidal M, Nin M, Vignoli R, , 2015. Sepsis caused by New Delhi metallo-β-lactamase (blaNDM-1) and qnrD-producing Morganella morganii, treated successfully with fosfomycin and meropenem: case report and literature review. Int J Infect Dis 30: 2026. [Google Scholar]
  6. Pillonetto M, Arend L, Vespero EC, Pelisson M, Chagas TP, Carvalho-Assef AP, Asensid MD, , 2014. First report of NDM-1-producing Acinetobacter baumannii sequence type 25 in Brazil. Antimicrob Agents Chemother 58: 75927594. [Google Scholar]
  7. Quiñones D, 2015. High prevalence of bla OXA-23 in Acinetobacter spp. and detection of bla NDM-1 in A. soli in Cuba: report from National Surveillance Program (2010–2012). New Microbes New Infect 7: 5256. [Google Scholar]
  8. Montaña S, Cittadini R, Del Castillo M, Uong S, Lazzaro T, Almuzara M, Barberis C, Vay C, Ramírez MS, , 2016. Presence of New Delhi metallo-β-lactamase gene (NDM-1) in a clinical isolate of Acinetobacter junii in Argentina. New Microbes New Infect 11: 4344. [Google Scholar]
  9. Resurrección-Delgado C, Montenegro-Idrogo JJ, Chiappe-Gonzalez A, Vargas-Gonzales R, Cucho-Espinoza C, Mamani-Condori DH, Huaroto-Valdivia LM, , 2017. [Klebsiella pneumoniae NEW DELHI METALO-LACTAMASE IN A PERUVIAN NATIONAL HOSPITAL]. Rev Peru Med Exp Salud Publica 34: 261267. [Google Scholar]
  10. Pendleton JN, Gorman SP, Gilmore BF, , 2013. Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther 11: 297308. [Google Scholar]
  11. Clinical and Laboratory Standards Institute, 2017. Performance Standards for Antimicrobial Susceptibility Testing; 27th Informational Supplement. CLSI M100-S27. Wayne, PA: Clinical and Laboratory Standards Institute. [Google Scholar]
  12. Magiorakos AP, 2012. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18: 268281. [Google Scholar]
  13. Poirel L, Walsh TR, Cuvillier V, Nordmann P, , 2011. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis 70: 119123. [Google Scholar]
  14. Ellington MJ, Kistler J, Livermore DM, Woodford N, , 2007. Multiplex PCR for rapid detection of genes encoding acquired metallo-beta-lactamases. J Antimicrob Chemother 59: 321322. [Google Scholar]
  15. Gonzalez-Villoria AM, Valverde-Garduno V, , 2016. Antibiotic-resistant Acinetobacter baumannii increasing success remains a challenge as a nosocomial pathogen. J Pathog 2016: 7318075. [Google Scholar]
  16. Peleg AY, Seifert H, Paterson DL, , 2008. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 21: 538582. [Google Scholar]
  17. Higgins PG, Dammhayn C, Hackel M, Seifert H, , 2010. Global spread of carbapenem-resistant Acinetobacter baumannii. J Antimicrob Chemother 65: 233238. [Google Scholar]
  18. Bonomo RA, Szabo D, , 2006. Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clin Infect Dis 43: S49S56. [Google Scholar]
  19. Bontron S, Nordmann P, Poirel L, , 2016. Transposition of Tn125 encoding the NDM-1 carbapenemase in Acinetobacter baumannii. Antimicrob Agents Chemother 60: 72457251. [Google Scholar]
  20. Bonnin RA, Poirel L, Naas T, Pirs M, Seme K, Schrenzel J, Nordmann P, , 2012. Dissemination of New Delhi metallo-β-lactamase-1-producing Acinetobacter baumannii in Europe. Clin Microbiol Infect 18: E362E365. [Google Scholar]

Data & Media loading...

  • Received : 04 Oct 2018
  • Accepted : 03 Dec 2018
  • Published online : 21 Jan 2019

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error