Volume 101, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



This article describes, for the first time, the role of the nasal mucosa (NM) as the initial site for the mycelial-to-yeast transition. The results highlight that yeasts may arrive to the cervical lymph nodes (CLN) via phagocytes. Bats and mice were intranasally infected with mycelial propagules and they were killed 10, 20, and 40 minutes and 1, 2, and 3 hours after infection. The NM and the CLN were monitored for fungal presence Yeasts compatible with were detected within the NM and the CLN dendritic cells (DCs) 2–3 hours postinfection, using immunohistochemistry. was re-isolated by culturing at 28°C from the CLN of both mammalian hosts 2–3 hours postinfection. Reverse transcription-polymerase chain reaction assays were designed to identify fungal dimorphism, using mycelial-specific () and yeast-specific () gene expression. This strategy supported fast fungal dimorphism in vivo, which began in the NM 1 hour postinfection (a time point when and genes were expressed) and it was completed at 3 hours (a time point when only the transcripts were detected) in both bats and mice. The presence of intracellular yeasts in the nasal-associated lymphoid tissue (NALT), in the NM nonassociated with the NALT, and within the interdigitating DCs of the CLN suggests early fungal dissemination via the lymph vessels.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Sahaza JH, Pérez-Torres A, Zenteno E, Taylor ML, , 2014. Usefulness of the murine model to study the immune response against Histoplasma capsulatum infection. Comp Immunol Microbiol Infect Dis 37: 143152. [Google Scholar]
  2. Garfoot AL, Chad A, Rappleye CD, , 2016. Histoplasma capsulatum surmounts obstacles to intracellular pathogenesis. FEBS J 283: 619633. [Google Scholar]
  3. Gildea LA, Morris RE, Newman SL, , 2001. Histoplasma capsulatum yeasts are phagocytosed via very late antigen-5, killed, and processed for antigen presentation by human dendritic cells. J Immunol 166: 10491056. [Google Scholar]
  4. Newman SL, , 2005. Interaction of Histoplasma capsulatum with human macrophages, dendritic cells, and neutrophils. Methods Mol Med 118: 181191. [Google Scholar]
  5. Gomez FJ, Pilcher-Roberts R, Alborzi A, Newman SL, , 2008. Histoplasma capsulatum cyclophilin A mediates attachment to dendritic cell VLA-5. J Immunol 181: 71067114. [Google Scholar]
  6. Eissenberg LG, Goldman WE, , 1991. Histoplasma variation and adaptive strategies for parasitism: new perspectives on histoplasmosis. Clin Microbiol Rev 4: 411421. [Google Scholar]
  7. Deepe GS, Jr. Gibbons RS, Smulian AG, , 2008. Histoplasma capsulatum manifests preferential invasion of phagocytic subpopulations in murine lungs. J Leukoc Biol 84: 669678. [Google Scholar]
  8. Van Prooyen N, Henderson CA, Hocking Murray D, Sil A, , 2016. CD103+ conventional dendritic cells are critical for TLR7/9-dependent host defense against Histoplasma capsulatum, an endemic fungal pathogen of humans. PLoS Pathog 12: e1005749. [Google Scholar]
  9. Newman SL, Lemen W, Smulian AG, , 2011. Dendritic cells restrict the transformation of Histoplasma capsulatum conidia into yeasts. Med Mycol 49: 356364. [Google Scholar]
  10. Tian X, Shearer G, Jr., 2001. Cloning and analysis of mold-specific genes in the dimorphic fungus Histoplasma capsulatum. Gene 275: 107114. [Google Scholar]
  11. Tian X, Shearer G, Jr., 2002. The mold-specific MS8 gene is required for normal hypha formation in the dimorphic pathogenic fungus Histoplasma capsulatum. Eukaryot Cell 1: 249256. [Google Scholar]
  12. Keath EJ, Painter AA, Kobayashi GS, Medoff G, , 1989. Variable expression of a yeast-phase-specific gene in Histoplasma capsulatum strains differing in thermotolerance and virulence. Infect Immun 57: 13841390. [Google Scholar]
  13. Kasuga T, 2003. Phylogeography of the fungal pathogen Histoplasma capsulatum. Mol Ecol 12: 33833401. [Google Scholar]
  14. Vite-Garín T, Estrada-Bárcenas DA, Cifuentes J, Taylor ML, , 2014. The importance of molecular analyses for understanding the genetic diversity of Histoplasma capsulatum: an overview. Rev Iberoam Micol 31: 1115. [Google Scholar]
  15. Teixeira MM, Patané JSL, Taylor ML, Gómez BL, Theodoro RC, de Hoog S, Engelthaler DM, Zancopé-Oliveira RM, Felipe MSS, Barker BM, , 2016. Worldwide phylogenetic distributions and population dynamics of the genus Histoplasma. PLoS Negl Trop Dis 10: e0004732. [Google Scholar]
  16. González-González AE, Aliouat-Denis CM, Carreto-Binaghi LE, Ramírez JA, Rodríguez-Arellanes G, Demanche C, Chabé M, Aliouat EM, Dei-Cas E, Taylor ML, , 2012. An Hcp100 gene fragment reveals Histoplasma capsulatum presence in lungs of Tadarida brasiliensis migratory bats. Epidemiol Infect 140: 19551963. [Google Scholar]
  17. Sahaza JH, Suárez-Alvarez R, Estrada-Bárcenas DA, Pérez-Torres A, Taylor ML, , 2015. Profile of cytokines in the lungs of BALB/c mice after intra-nasal infection with Histoplasma capsulatum mycelial propagules. Comp Immunol Microbiol Infect Dis 41: 19. [Google Scholar]
  18. Taylor ML, Chávez-Tapia CB, Vargas-Yañez R, Rodríguez-Arellanes G, Peña-Sandoval GR, Toriello C, Pérez A, Reyes-Montes MR, , 1999. Environmental conditions favoring bat infection with Histoplasma capsulatum in Mexican shelters. Am J Trop Med Hyg 61: 914919. [Google Scholar]
  19. Taylor ML, Chávez-Tapia CB, Reyes-Montes MR, , 2000. Molecular typing of Histoplasma capsulatum isolated from infected bats, captured in Mexico. Fungal Genet Biol 30: 207212. [Google Scholar]
  20. Espinosa-Avilés D, Taylor ML, Reyes-Montes MR, Pérez-Torrez A, , 2008. Molecular findings of disseminated histoplasmosis in two captive snow leopards (Uncia uncia). J Zoo Wildl Med 39: 450454. [Google Scholar]
  21. Pérez-Torres A, Rosas-Rosas A, Parás-García A, Juan-Sallés C, Taylor ML, , 2009. Second case of histoplasmosis in a captive mara (Dolichotis patagonum): pathological findings. Mycopathologia 68: 95100. [Google Scholar]
  22. Keath EJ, Abidi FE, , 1994. Molecular cloning and sequence analysis of yps-3, a yeast-phase-specific gene in the dimorphic fungal pathogen Histoplasma capsulatum. Microbiology 140: 759767. [Google Scholar]
  23. Weaver CH, Sheehan KC, Keath EJ, , 1996. Localization of a yeast-phase-specific gene product to the cell wall in Histoplasma capsulatum. Infect Immun 64: 30483054. [Google Scholar]
  24. Bohse ML, Woods JP, , 2005. Surface localization of the Yps3p protein of Histoplasma capsulatum. Eukaryot Cell 4: 685693. [Google Scholar]
  25. Bohse ML, Woods JP, , 2007. Expression and inter strain variability of the YPS3 gene of Histoplasma capsulatum. Eukaryot Cell 6: 609615. [Google Scholar]
  26. McCaffrey TV, Bailey BJ, Calhoun KH, Healy GB, Pillsbury HC, III Johnson JT, Tardy ME, Jr Jackler RK, , 2001. Nasal function and evaluation. , eds. Head and Neck Surgery-Otolaryngology. Philadelphia, PA: Lippincott Williams and Wilkins, 261271. [Google Scholar]
  27. Heritage PL, Underdown BJ, Arsenault AL, Snider DP, McDermott MR, , 1997. Comparison of murine nasal-associated lymphoid tissue and Peyer’s patches. Am J Respir Crit Care Med 156: 12561262. [Google Scholar]
  28. Heritage PL, Brook MA, Underdown BJ, McDermott MR, , 1998. Intranasal immunization with polymer-grafted microparticles activates the nasal-associated lymphoid tissue and draining lymph nodes. Immunology 93: 249256. [Google Scholar]
  29. Suárez-Alvarez RO, Taylor ML, Pérez-Torres A, , 2009. Identificación histológica del tejido linfoide asociado a la nariz (NALT) en el murciélago migratorio (Tadarida brasiliensis). LAB Acta 21: 58. [Google Scholar]
  30. Maresca B, Kobayashi GS, , 1989. Dimorphism in Histoplasma capsulatum: a model for the study of cell differentiation in pathogenic fungi. Microbiol Rev 53: 186209. [Google Scholar]
  31. Medoff G, Kobayashi GS, Painter A, Travis S, , 1987. Morphogenesis and pathogenicity of Histoplasma capsulatum. Infect Immun 55: 13551358. [Google Scholar]
  32. Kimberlin CL, Hariri AR, Hempel HO, Goodman NL, , 1981. Interactions between Histoplasma capsulatum and macrophages from normal and treated mice: comparison of the mycelia and yeast phases in alveolar and peritoneal macrophages. Infect Immun 34: 610. [Google Scholar]
  33. Inglis DO, Berkes CA, Hocking Murray DR, Sil A, , 2010. Conidia but not yeast cells of the fungal pathogen Histoplasma capsulatum trigger a type I interferon innate immune response in murine macrophages. Infect Immun 78: 38713882. [Google Scholar]
  34. Inglis DO, Voorhies M, Hocking Murray DR, Sil A, , 2013. Comparative transcriptomics of infectious spores from the fungal pathogen Histoplasma capsulatum reveals a core set of transcripts that specify infectious and pathogenic states. Eukaryot Cell 12: 828852. [Google Scholar]
  35. McMahon JP, Wheat J, Sobel ME, Pasula R, Downing JF, Martin WJ, II, 1995. Murine laminin binds to Histoplasma capsulatum. A possible mechanism of dissemination. J Clin Invest 96: 10101017. [Google Scholar]
  36. Taylor ML, Duarte-Escalante E, Pérez A, Zenteno E, Toriello C, , 2004. Histoplasma capsulatum yeast cells attach and agglutinate human erythrocytes. Med Mycol 42: 287292. [Google Scholar]

Data & Media loading...

Supplemental figure

  • Received : 28 Sep 2018
  • Accepted : 16 Mar 2019
  • Published online : 08 Jul 2019

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error