1921
Volume 100, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Antibiotic resistance in pathogenic bacteria is a serious public health issue. The growing threat is a cause for concern and action to prevent the emergence of new resistant strains and the spread of existing ones to humans via the environment. This study aimed at identifying fecal pathogens in drinking water obtained from rural Andean households from Cajamarca, Peru, and measuring the antibiotic resistance profile of . The study was embedded within a community-randomized controlled trial among 102 communities in the northern highlands of the Cajamarca region, Peru. Of 314 samples, 55.4% (95% CI [49.7, 61.0], = 174) were identified as thermotolerant coliforms. Among the samples positive for thermotolerant coliform, was isolated in 37.3% ( = 117), spp in 8.0% ( = 25), spp in 5.1% ( = 16), and spp in 2.5% ( = 8). Of the 117 samples, 48.7% (95% CI [39.4, 58.1], = 57) showed resistance to any antibiotic. The antibiotic resistance profile showed highest resistance against tetracycline (37.6%), ampicillin (34.2%), sulfamethoxazole–trimethoprim (21.4%), and nalidixic acid (13%). Some 19.7% (95% CI [12.9, 28.0], = 23) of the isolates displayed multidrug resistance, defined as resistance to at least three classes of antibiotics. The CTX-M-3 gene, which encodes extended-spectrum resistance to beta-lactamase antibiotics, was found in one isolate. The high prevalence of fecal contamination in drinking water highlights the importance of household water treatment methods. Likewise, the high levels of antibiotic resistance found indicate a need for further research to identify the origins of potential environmental contamination, misuse, or inadequate disposal of antibiotics.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.18-0776
2019-04-22
2020-08-03
Loading full text...

Full text loading...

/deliver/fulltext/14761645/100/6/tpmd180776.html?itemId=/content/journals/10.4269/ajtmh.18-0776&mimeType=html&fmt=ahah

References

  1. WHO, 2018. Antimicrobial Resistance. Geneva, Switzerland:World Health Organization. Available at: http://www.who.int/mediacentre/factsheets/fs194/en/. Accessed May 9, 2017.
    [Google Scholar]
  2. Okeke IN, Laxminarayan R, Bhutta ZA, Duse AG, Jenkins P, O’Brien TF, Pablos-Mendez A, Klugman KP, 2005. Antimicrobial resistance in developing countries. Part I: recent trends and current status. Lancet Infect Dis 5: 481493.
    [Google Scholar]
  3. Wuijts S, van den Berg HH, Miller J, Abebe L, Sobsey M, Andremont A, Medlicott KO, van Passel MW, de Roda Husman AM, 2017. Towards a research agenda for water, sanitation and antimicrobial resistance. J Water Health 15: 175184.
    [Google Scholar]
  4. Van Boeckel TP, Gandra S, Ashok A, Caudron Q, Grenfell BT, Levin SA, Laxminarayan R, 2014. Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect Dis 14: 742750.
    [Google Scholar]
  5. Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, Teillant A, Laxminarayan R, 2015. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci USA 112: 56495654.
    [Google Scholar]
  6. Ochoa TJ et al., 2009. High frequency of antimicrobial drug resistance of diarrheagenic Escherichia coli in infants in Peru. Am J Trop Med Hyg 81: 296301.
    [Google Scholar]
  7. Pehrsson EC et al., 2016. Interconnected microbiomes and resistomes in low-income human habitats. Nature 533: 212216.
    [Google Scholar]
  8. Bartoloni A et al., 2009. Antibiotic resistance in a very remote Amazonas community. Int J Antimicrob Agents 33: 125129.
    [Google Scholar]
  9. Pallecchi L et al., 2012. Quinolone resistance in absence of selective pressure: the experience of a very remote community in the Amazon forest. PLoS Negl Trop Dis 6: e1790.
    [Google Scholar]
  10. Dib JR, Weiss A, Neumann A, Ordoñez O, Estévez MC, Farías ME, 2009. Isolation of bacteria from remote high altitude Andean lakes able to grow in the presence of antibiotics. Recent Pat Antiinfect Drug Discov 4: 6676.
    [Google Scholar]
  11. Lluque A, Mosquito S, Gomes C, Riveros M, Durand D, Tilley DH, Bernal M, Prada A, Ochoa TJ, Ruiz J, 2015. Virulence factors and mechanisms of antimicrobial resistance in Shigella strains from periurban areas of Lima (Peru). Int J Med Microbiol 305: 480490.
    [Google Scholar]
  12. Kalter HD, Gilman RH, Moulton LH, Cullotta AR, Cabrera L, Velapatiño B, 2010. Risk factors for antibiotic-resistant Escherichia coli carriage in young children in Peru: community-based cross-sectional prevalence study. Am J Trop Med Hyg 82: 879888.
    [Google Scholar]
  13. Kosek M, Yori PP, Pan WK, Olortegui MP, Gilman RH, Perez J, Chavez CB, Sanchez GM, Burga R, Hall E, 2008. Epidemiology of highly endemic multiply antibiotic-resistant shigellosis in children in the Peruvian Amazon. Pediatrics 122: e541e549.
    [Google Scholar]
  14. WHO, 2015. Antimicrobial Resistance: Draft Global Action Plan on Antimicrobial Resistance. Sixty-Eighth World Health Assembly. Geneva, Switzerland:World Health Organization. Available at: http://apps.who.int/gb/ebwha/pdf_files/WHA68/A68_20-en.pdf?ua=1. Accessed November 24, 2017.
    [Google Scholar]
  15. Hartinger SM, Lanata CF, Gil AI, Hattendorf J, Verastegui H, Mäusezahl D, 2012. Combining interventions: improved chimney stoves, kitchen sinks and solar disinfection of drinking water and kitchen clothes to improve home hygiene in rural Peru. Field Actions Science Reports: The Journal of Field Actions, Special Issue 6, 1–10. Available at: https://factsreports.revues.org/1627. Accessed November 28, 2017.
    [Google Scholar]
  16. Hartinger SM, Nuño N, Hattendorf J, Verastegui H, Ortiz M, Mausezahl D, 2018. A factorial randomised controlled trial to combine home-environmental and early child development interventions to improve child health and development: rationale, trial design and baseline findings. Preprint BioRxiv, doi: 10.1101/465856.
  17. Rosa G, Huaylinos ML, Gil A, Lanata C, Clasen T, 2014. Assessing the consistency and microbiological effectiveness of household water treatment practices by urban and rural populations claiming to treat their water at home: a case study in Peru. PLoS One 9: e114997.
    [Google Scholar]
  18. Mastroeni P, Carbone M, Fera MT, Teti G, 1983. Comparison of six systems for the identification of Enterobacteriaceae. G Batteriol Virol Immunol 76: 319.
    [Google Scholar]
  19. Bauer AW, Kirby WM, Sherris JC, Turck M, 1966. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45: 493496.
    [Google Scholar]
  20. Clinical and Laboratory Standards Institute, 2017. M100: Performance Standards for Antimicrobial Susceptibility Testing. Wayne, PA: Clinical and Laboratory Standards Institute.
    [Google Scholar]
  21. Lezameta L, Gonzáles-Escalante E, Tamariz JH, 2010. Comparison of four phenotypic methods to detect extended-spectrum betalactamases [article in Spanish]. Rev Peru Med Exp Salud Publica 27: 345351.
    [Google Scholar]
  22. Guiral E, Pons MJ, Vubil D, Marí-Almirall M, Sigaúque B, Soto SM, Alonso PL, Ruiz J, Vila J, Mandomando I, 2018. Epidemiology and molecular characterization of multidrug-resistant Escherichia coli isolates harboring blaCTX-M group 1 extended-spectrum β-lactamases causing bacteremia and urinary tract infection in Manhiça, Mozambique. Infect Drug Resist 11: 927936.
    [Google Scholar]
  23. R Core Team, 2017. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
    [Google Scholar]
  24. WHO, 2004. Guidelines for Drinking-Water Quality. Geneva, Switzerland: World Health Organization. Available at: http://www.who.int/water_sanitation_health/dwq/GDWQ2004web.pdf. Accessed September 26, 2017.
    [Google Scholar]
  25. Dirección General de Salud Ambiental Ministerio de Salud, 2011. Reglamento de La Calidad Del Agua Para Consumo Humano, Vol. DS N° 031-2010-SA. Peru: Ministerio de Salud (Ministry of Health). Available at: http://www.digesa.minsa.gob.pe/publicaciones/descargas/reglamento_calidad_agua.pdf. Accessed September 26, 2017.
    [Google Scholar]
  26. Ministerio de Salud (Ministry of Health) of Peru, 2015. Modifican Los Estándares Nacionales de Calidad Ambiental Para Agua y Establecen Disposiciones Complementarias Para Su Aplicación. Lima, Peru: El Peruano. Available at: http://www.minam.gob.pe/wp-content/uploads/2015/12/Decreto-Supremo-N%C2%B0-015-2015-MINAM.pdf. Accessed September 26, 2017.
    [Google Scholar]
  27. Bartoloni A et al., 2006. Multidrug-resistant commensal Escherichia coli in children, Peru and Bolivia. Emerg Infect Dis 12: 907913.
    [Google Scholar]
  28. Pons MJ, Mosquito S, Gomes C, del Valle LJ, Ochoa TJ, Ruiz J, 2014. Analysis of quinolone-resistance in commensal and diarrheagenic Escherichia coli isolates from infants in Lima, Peru. Trans R Soc Trop Med Hyg 108: 2228.
    [Google Scholar]
  29. Zhao W-H, Hu Z-Q, 2013. Epidemiology and genetics of CTX-M extended-spectrum β-lactamases in Gram-negative bacteria. Crit Rev Microbiol 39: 79101.
    [Google Scholar]
  30. Pallecchi L, Bartoloni A, Fiorelli C, Mantella A, Di Maggio T, Gamboa H, Gotuzzo E, Kronvall G, Paradisi F, Rossolini GM, 2007. Rapid dissemination and diversity of CTX-M extended-spectrum β-lactamase genes in commensal Escherichia coli isolates from healthy children from low-resource settings in Latin America. Antimicrob Agents Chemother 51: 27202725.
    [Google Scholar]
  31. Lukac PJ, Bonomo RA, Logan LK, 2015. Extended-spectrum β-lactamase–producing Enterobacteriaceae in children: old foe, emerging threat. Clin Infect Dis 60: 13891397.
    [Google Scholar]
  32. Adrianzén D, Arbizu A, Ortiz J, Samalvides F, 2013. Mortality caused by bacteremia Escherichia coli and Klebsiella spp. extended-spectrum beta-lactamase- producers: a retrospective cohort from a hospital in Lima, Peru. Rev Peru Med Exp Salud Publica 30: 1825.
    [Google Scholar]
  33. Aliaga FC, Andrade CS, Escalante EG, 2015. Enterobacterias productoras de betalactamasas de espectro extendido en muestras fecales en el Instituto Nacional de Salud del Niño, Perú. Revista Peruana de Medicina Exp y Salud Pública 32: 2632.
    [Google Scholar]
  34. García C, Astocondor L, Rojo-Bezares B, Jacobs J, Sáenz Y, 2016. Molecular characterization of extended-spectrum β-lactamase-producer Klebsiella pneumoniae isolates causing neonatal sepsis in Peru. Am J Trop Med Hyg 94: 285288.
    [Google Scholar]
  35. Korzeniewska E, Korzeniewska A, Harnisz M, 2013. Antibiotic resistant Escherichia coli in hospital and municipal sewage and their emission to the environment. Ecotoxicol Environ Saf 91 96102.
    [Google Scholar]
  36. Dolejska M, Frolkova P, Florek M, Jamborova I, Purgertova M, Kutilova I, Cizek A, Guenther S, Literak I, 2011. CTX-M-15-producing Escherichia coli clone B2-O25b-ST131 and Klebsiella spp. isolates in municipal wastewater treatment plant effluents. J Antimicrob Chemother 66: 27842790.
    [Google Scholar]
  37. De Boeck H, Miwanda B, Lunguya-Metila O, Muyembe-Tamfum J-J, Stobberingh E, Glupczynski Y, Jacobs J, 2012. ESBL-positive enterobacteria isolates in drinking water. Emerg Infect Dis 18: 10191020.
    [Google Scholar]
  38. Abera B, Kibret M, Mulu W, 2016. Extended-spectrum beta (β)-lactamases and antibiogram in Enterobacteriaceae from clinical and drinking water sources from Bahir Dar city, Ethiopia. PLoS One 11: e0166519.
    [Google Scholar]
  39. Madec J-Y, Haenni M, Ponsin C, Kieffer N, Rion E, Gassilloud B, 2016. Sequence type 48 Escherichia coli carrying the blaCTX-M-1 IncI1/ST3 plasmid in drinking water in France. Antimicrob Agents Chemother 60: 64306432.
    [Google Scholar]
  40. Levy K, 2015. Does poor water quality cause diarrheal disease? Am J Trop Med Hyg 93: 899900.
    [Google Scholar]
  41. Clasen TF, Alexander KT, Sinclair D, Boisson S, Peletz R, Chang HH, Majorin F, Cairncross S, 2015. Interventions to improve water quality for preventing diarrhoea. Cochrane Database Syst Rev 10: CD004794.
    [Google Scholar]
  42. Eisenberg JNS, Scott JC, Porco T, 2007. Integrating disease control strategies: balancing water sanitation and hygiene interventions to reduce diarrheal disease burden. Am J Public Health 97: 846852.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.18-0776
Loading
/content/journals/10.4269/ajtmh.18-0776
Loading

Data & Media loading...

  • Received : 24 Sep 2018
  • Accepted : 03 Feb 2019
  • Published online : 22 Apr 2019
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error