1921
Volume 101, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Chagas disease is a public health problem caused by the , and the I (TcI) and II (TcII) groups are considered important genotypes from the clinical point of view. Currently, the groups need to be molecularly analyzed for their identification; thus, we cytogenetically analyzed these groups with the objective of developing more accessible techniques for the characterization of these parasites. TcI and TcII groups were differentiated by nucleus characterization with lacto-acetic orcein (TcI—nucleus with positive heteropycnosis and TcII—nucleus with negative heteropycnosis), emphasizing the importance of the application of this technique for epidemiological and clinical studies of Chagas disease.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.18-0650
2019-07-29
2020-09-26
Loading full text...

Full text loading...

/deliver/fulltext/14761645/101/3/tpmd180650.html?itemId=/content/journals/10.4269/ajtmh.18-0650&mimeType=html&fmt=ahah

References

  1. Nouvellet P, Cucunubá ZM, Gourbière S, 2015. Ecology, evolution and control of Chagas disease: a century of neglected modelling and a promising future. Adv Parasitol 87: 135191.
    [Google Scholar]
  2. World Health Organization, 2018. Chagas Disease (American Trypanosomiasis). Available at: http://www.who.int/chagas/en/. Accessed August 08, 2018.
    [Google Scholar]
  3. Pan American Health Organization, 2017. Chagas in the Americas for the General. Available at: https://www.paho.org/hq/index.php?option=com_content&view=article&id=13566&Itemid=40721&lang=pt. Accessed August 08, 2018.
    [Google Scholar]
  4. Angheben A, Boix L, Buonfrate D, Gobbi F, Bisoffi Z, Pupella S, Gandini G, Aprili G, 2015. Chagas disease and transfusion medicine: a perspective from non-endemic countries. Blood Transfus 13: 540550.
    [Google Scholar]
  5. Howard EJ, Xiong X, Carlier Y, Sosa-Estani S, Buekens P, 2015. Frequency of the congenital transmission of Trypanosoma cruzi: a systematic review and meta-analysis. BJOG 121: 2233.
    [Google Scholar]
  6. World Health Organization, 2017. Chagas Disease (American Trypanosomiasis). Available at: http://www.who.int/mediacentre/factsheets/fs340/en/. Accessed August 08, 2018.
    [Google Scholar]
  7. Zingales B et al., 2012. The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infect Genet Evol 12: 240253.
    [Google Scholar]
  8. Marcili A, Lima L, Cavazzana M, Junqueira AC, Veludo HH, Maia da Silva F, Campaner M, Paiva F, Nunes VL, Teixeira MM, 2009. A new genotype of Trypanosoma cruzi associated with bats evidenced by phylogenetic analyses using SSU rDNA, cytochrome b and histone H2B genes and genotyping based on ITS1 rDNA. Parasitology 136: 641655.
    [Google Scholar]
  9. Zingales B et al., 2009. A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz 104: 10511054.
    [Google Scholar]
  10. Miles MA, Cedillos RA, Póvoa MM, Souza AA, Prata A, Macedo V, 1981. Do radically dissimilar Trypanosoma cruzi strains (zymodemes) cause Venezuelan and Brazilian forms of Chagas’ disease? Lancet 1: 13381340.
    [Google Scholar]
  11. Freitas JM, Lages-Silva E, Crème E, Pena SD, Macedo AM, 2005. Real time PCR strategy for the identification of major lineages of Trypanosoma cruzi directly in chronically infected human tissues. Int J Parasitol 35: 411417.
    [Google Scholar]
  12. Lages-Silva E, Ramírez LE, Pedrosa AL, Crema E, Cunha Galvão LM, Pena SD, Macedo AM, Chiari E, 2006. Variability of kinetoplast DNA gene signatures of Trypanosoma cruzi II strains from patients with different clinical forms of Chagas disease in Brazil. J Clin Microbiol 44: 21672171.
    [Google Scholar]
  13. Lima VS, Xavier SC, Maldonado IF, Roque AL, Vicente AC, Jansen AM, 2014. Expanding the knowledge of the geographic distribution of Trypanosoma cruzi TcII and TcV/TcVI genotypes in the Brazilian Amazon. PLoS One 9: e116137.
    [Google Scholar]
  14. Silva LHP, Nussenzweig V, 1953. Sobre uma cepa de Trypanosoma cruzi altamente virulenta para o camundongo branco. Folia Clin Biol 20: 191203.
    [Google Scholar]
  15. Pennington PM, Paiz C, Grajeda LM, Cordón-Rosales C, 2009. Concurrent detection of Trypanosoma cruzi lineages I and II in domestic Triatoma dimidiata from Guatemala. Am J Trop Med Hyg 80: 239241.
    [Google Scholar]
  16. Rocha FL, Roque AL, Arrais RC, Santos JP, Lima VS, Xavier SC, Cordeir-Estrela P, D’Andrea PS, Jansen AM, 2013. Trypanosoma cruzi TcI and TcII transmission among wild carnivores, small mammals and dogs in a conservation unit and surrounding areas, Brazil. Parasitology 140: 160170.
    [Google Scholar]
  17. Lisboa CV, Dietz J, Baker AJ, Russel NN, Jansen AM, 2000. Trypanosoma cruzi infection in Leontopithecus rosalia at the Reserva Biológica de Poco das Antas, Rio de Janeiro, Brazil. Mem Inst Oswaldo Cruz 95: 445452.
    [Google Scholar]
  18. Funayama GK, Prado Junior JC, 1974. Estudo sobre os caracteres de una amostra boliviana do Trypanosoma cruzi. Rev Soc Bras Med Trop 8: 7581.
    [Google Scholar]
  19. Ribeiro AR et al., 2018. Biological and molecular characterization of Trypanosoma cruzi strains from four states of Brazil. Am J Trop Med Hyg 98: 453463.
    [Google Scholar]
  20. De Vaio ES, Grucci B, Castagnino AM, Franca ME, Martínez ME, 1985. Meiotic differences between three triatomine species (Heteroptera, Reduviidae). Genetica 67: 185191.
    [Google Scholar]
  21. Alevi KCC, Mendonça PP, Pereira NP, Rosa JA, Azeredo-Oliveira MTV, 2012. Karyotype of Triatoma melanocephala Neiva and Pinto (1923). Does this species fit in the Brasiliensis subcomplex? Infect Genet Evol 12: 16521653.
    [Google Scholar]
  22. Yasukawa K, Patel SM, Flash CA, Stager CE, Goodman JC, Woc-Colburn L, 2014. Trypanosoma cruzi meningoencephalitis in a patient with acquired immunodeficiency syndrome. Am J Trop Med Hyg 91: 8485.
    [Google Scholar]
  23. Tomasini N, Diosque P, 2015. Evolution of: clarifying hybridisations, mitochondrial introgressions and phylogenetic relationships between major lineages. Mem Inst Oswaldo Cruz 110: 403413.
    [Google Scholar]
  24. Kawashita SY, Sanson GFO, Fernandes O, Zingales B, Briones MRS, 2001. Maximum-likelihood divergence date estimates based on rRNA gene sequences suggest two scenarios of Trypanosoma cruzi intraspecific evolution. Mol Biol Evol 18: 22502259.
    [Google Scholar]
  25. Machado CA, Ayala FJ, 2002. Sequence variation in the dihydrofolate reductasethymidylate synthase (DHFR-TS) and trypanothione reductase (TR) genes of Trypanosoma cruzi. Mol Biochem Parasitol 121: 3347.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.18-0650
Loading
/content/journals/10.4269/ajtmh.18-0650
Loading

Data & Media loading...

  • Received : 08 Aug 2018
  • Accepted : 06 May 2019
  • Published online : 29 Jul 2019
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error