1921
Volume 100, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Cystic echinococcosis (CE) is a parasitic zoonosis caused by the larval stage of the tapeworm . Detection of the adult stage in the canine definitive host is essential for estimating infection rates, surveillance and monitoring of CE control programs. This study sought to develop and validate a coproantigen sandwich enzyme–linked immunosorbent assay (copro-ELISA), based on antibodies against –soluble membrane antigens (EGMA), that is capable of distinguishing infected and noninfected dogs. Anti- polyclonal immunoglobulin G antibodies were obtained from rabbit antiserum against EGMA. Optimization of the test was performed with 51 positive and 56 negative stool samples of canine echinococcosis. Specificity, sensitivity, cross-reactivity, intra- and inter-assay precision, and over time detection were evaluated. According to the receiver operating characteristic analysis, the diagnostic sensitivity and specificity were 96.1% (CI: 85.9–99.6) and 98.2% (CI: 89.5–100), respectively. Negative and positive predictive values were 96.5% (CI: 91.7–100) and 98% (CI: 94.1–100), respectively. No cross-reactivity with , , or was observed. Intra- and inter-assay repeatability showed values of less than 15% of the variation coefficient. The over time detection was from 20 to 27 days postinfection with . The copro-ELISA based on EGMA detection offers a simplified in-house development of diagnostic testing. This assay showed high specificity and sensitivity and had no cross-reactivity with other parasites. Further studies and development of this test in a kit format may be useful for the detection of active infection in dogs living in CE endemic regions.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.18-0645
2018-12-10
2020-09-23
Loading full text...

Full text loading...

/deliver/fulltext/14761645/100/2/tpmd180645.html?itemId=/content/journals/10.4269/ajtmh.18-0645&mimeType=html&fmt=ahah

References

  1. Chrieki M, 2002. Echinococosis-an emerging parasite in the immigrant population. Am Fam Physician 66: 817820.
    [Google Scholar]
  2. Agudelo Higuita NI, Brunetti E, Mccloskey C, 2015. Cystic echinococcosis. J Clin Microbiol 54: 518523.
    [Google Scholar]
  3. Pavletic CF et al., 2017. Cystic echinococcosis in South America: a call for action. Rev Panam Salud Publica 41: 18.
    [Google Scholar]
  4. Spickler AR, Roth JA, Galyon J, Lofstedt MV, 2010. Enfermedades Emergentes y Exóticas de los Animales. Ames, IA: Center for Food Security and Public Health.
    [Google Scholar]
  5. Craig PS, Hegglin D, Lightowlers MW, Torgerson PR, Wang Q, 2017. Echinococcosis: control and prevention. Adv Parasitol 96: 55158.
    [Google Scholar]
  6. Brunetti E, Garcia HH, Junghanss T, 2011. Cystic echinococcosis: chronic, complex, and still neglected. PLoS Negl Trop Dis 5: e1146.
    [Google Scholar]
  7. Alvarez Rojas CA, Romig T, Lightowlers MW, 2014. Echinococcus granulosus sensu lato genotypes infecting humans—review of current knowledge. Int J Parasitol 44: 918.
    [Google Scholar]
  8. Carmena D, Cardona GA, 2013. Canine echinococcosis: global epidemiology and genotypic diversity. Acta Trop 128: 441460.
    [Google Scholar]
  9. Grosso G, Gruttadauria S, Biondi A, Marventano S, Mistretta A, 2012. Worldwide epidemiology of liver hydatidosis including the Mediterranean area. World J Gastroenterol 18: 14251437.
    [Google Scholar]
  10. Casas N, Costas Otero S, Céspedes G, Sosa S, Santillán G, 2013. Detección de coproantígenos para el diagnóstico de echinococosis canina en la zona fronteriza de La Quiaca-Villazón. Rev Argent Microbiol 45: 154159.
    [Google Scholar]
  11. Craig P, Mastin A, van Kesteren F, Boufana B, 2015. Echinococcus granulosus: epidemiology and state-of-the-art of diagnostics in animals. Vet Parasitol 213: 132148.
    [Google Scholar]
  12. Allan JC, Craig PS, 2006. Coproantigens in taeniasis and echinococcosis. Parasitol Int 55: 7580.
    [Google Scholar]
  13. Pierangeli NB, Soriano SV, Roccia I, Bergagna HF, Lazzarini LE, Celescinco A, Kossman AV, Saiz MS, Basualdo JA, 2010. Usefulness and validation of a coproantigen test for dog echinococcosis screening in the consolidation phase of hydatid control in Neuquén, Argentina. Parasitol Int 59: 394399.
    [Google Scholar]
  14. Allan JC et al., 1992. Coproantigen detection for immunodiagnosis of echinococcosis and taeniasis in dogs and humans. Parasitology 104: 347356.
    [Google Scholar]
  15. Himonas C, Antoniadou-Sotiriadou K, Papadopoulos E, 1994. Hydatidosis of food animals in Greece: prevalence of cysts containing viable protoscoleces. J Helminthol 68: 311313.
    [Google Scholar]
  16. Stefanić S, Shaikenov BS, Deplazes P, Dinkel A, Torgerson PR, Mathis A, 2004. Polymerase chain reaction for detection of patent infections of Echinococcus granulosus (“sheep strain”) in naturally infected dogs. Parasitol Res 92: 347351.
    [Google Scholar]
  17. Santos AL et al., 2006. Phytomonas serpens: cysteine peptidase inhibitors interfere with growth, ultrastructure and host adhesion. Int J Parasitol 36: 4756.
    [Google Scholar]
  18. Bradford MM, 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248254.
    [Google Scholar]
  19. Alzamora-Gonzales L, Echevarria RJ, Colona-Vallejos EH, Aguilar-Luis MA, de Amat-Herbozo CCD, 2016. Desarrollo de ELISA sándwich indirecto para la determinación de antígenos de excreción-secreción de Fasciola hepatica. Rev Peru Biol 23: 4752.
    [Google Scholar]
  20. Tello R, Terashima A, Marcos LA, Machicado J, Canales M, Gotuzzo E, 2012. Highly effective and inexpensive parasitological technique for diagnosis of intestinal parasites in developing countries: spontaneous sedimentation technique in tube. Int J Infect Dis 16: e414e416.
    [Google Scholar]
  21. Hanneman SK, Cox CD, Green KE, Kang DH, 2011. Estimating intra- and inter-assay variability in salivary cortisol. Biol Res Nurs 13: 243250.
    [Google Scholar]
  22. Giménez-Lirola LG et al., 2016. Detection of African swine fever virus antibodies in serum and oral fluid specimens using a recombinant protein 30 (p30) dual matrix indirect ELISA. PLoS One 11: 114.
    [Google Scholar]
  23. Greiner M, Pfeiffer D, Smith RD, 2000. Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Prev Vet Med 45: 2341.
    [Google Scholar]
  24. Deplazes P, Gottstein B, Eckert J, Jenkins DJ, Ewald D, Jimenez-Palacios S, 1992. Detection of Echinococcus coproantigens by enzyme-linked immunosorbent assay in dogs, dingoes and foxes. Parasitol Res 78: 303308.
    [Google Scholar]
  25. Elayoubi FA, Fraser A, Jenkins DJ, Craig PS, 2003. Partial characterisation of carbohydrate-rich Echinococcus granulosus coproantigens. Int J Parasitol 33: 15531559.
    [Google Scholar]
  26. Benito A, Carmena D, 2005. Double-antibody sandwich ELISA using biotinylated antibodies for the detection of Echinococcus granulosus coproantigens in dogs. Acta Trop 95: 915.
    [Google Scholar]
  27. Huang Y et al., 2014. Echinococcus infections in Chinese dogs: a comparison of coproantigen kits. J Helminthol 88: 189195.
    [Google Scholar]
  28. Morel N, Lassabe G, Elola S, Bondad M, Herrera S, Marí C, Last JA, Jensen O, Gonzalez-Sapienza G, 2013. A monoclonal antibody-based copro-ELISA kit for canine echinococcosis to support the PAHO effort for hydatid disease control in South America. PLoS Negl Trop Dis 7: 18.
    [Google Scholar]
  29. Lahmar S, Lahmar S, Boufana B, Bradshaw H, Craig PS, 2017. Screening for Echinococcus granulosus in dogs: comparison between arecoline purgation, coproELISA and coproPCR with necropsy in pre-patent infections. Vet Parasitol 144: 287292.
    [Google Scholar]
  30. Siles-Lucas M, Casulli A, Conraths FJ, Müller N, 2017. Laboratory diagnosis of Echinococcus spp. in human patients and infected animals. Adv Parasitol 96: 159257.
    [Google Scholar]
  31. Malgor R, Nonaka N, Basmadjian I, Sakai H, Carámbula B, Oku Y, Carmona C, Kamiya M, 1997. Coproantigen detection in dogs experimentally and naturally infected with Echinococcus granulosus by a monoclonal antibody-based enzyme-linked immunosorbent assay. Int J Parasitol 27: 16051612.
    [Google Scholar]
  32. Benito A, Carmena D, Joseph L, Martínez J, Guisantes JA, 2006. Dog echinococcosis in northern Spain: comparison of coproantigen and serum antibody assays with coprological exam. Vet Parasitol 142: 102111.
    [Google Scholar]
  33. Lipman N, Jackson LR, Trudel LJ, Weis-Gracia F, 2005. Monoclonal versus polyclonal antibodies: distinguishing characteristics, applications, and information resources. ILAR J 46: 258268.
    [Google Scholar]
  34. Hajian-Tilaki K, 2013. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J Intern Med 4: 627635.
    [Google Scholar]
  35. Montalvo R, Clemente J, Castañeda L, Caro E, Cente Y, Nuñez M, 2018. Coproprevalence of canine infestation by Echinococcus granulosus in an endemic hidatidosis district in Peru. Rev Inv Vet Perú 29: 263269.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.18-0645
Loading
/content/journals/10.4269/ajtmh.18-0645
Loading

Data & Media loading...

  • Received : 06 Aug 2018
  • Accepted : 29 Oct 2018
  • Published online : 10 Dec 2018
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error