1921
Volume 100, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

The mosquito is a transmission vector for dangerous epidemic diseases in humans. Insecticides have been used as the most general vector control method in the world. However, have developed many resistant mechanisms such as reduced neuronal sensitivity to insecticides (target-site resistance), enhanced insecticide metabolism (metabolic resistance), altered transport, sequestration, and other mechanisms. It has become a major problem for vector control programs. Transcriptome sequencing and bioinformatic analysis were used to compare transcription levels between a susceptible strain (Bora7) and a resistant strain (KhanhHoa7) collected from the field. A total of 161 million Illumina reads, including 66,076,678 reads from the Bora7 strain and 69,606,654 reads from the KhanhHoa7 strain, were generated and assembled into 11,174 genes. A comparison of the KhanhHoa7 transcriptome to that of Bora7 showed 672 upregulated genes and 488 downregulated genes. We identified the highly upregulated genes: cytochrome P450 , , , , isoform X2, , isoform X2, , , , , and ; Glutathione S transferase (GST1), UGT1-3, 1-7, 2B15, and 2B37; binding cassette transporter (ABC) transporter F family member 4 and ABC transporter G family member 20. Interestingly, there was a significant increase in the expression of the genes such as (8.3-fold), (5.9-fold), (5.4-fold), (5.4-fold), (5.2-fold), (3.5-fold), and ABC transporter 4 (2.1-fold). Our results suggested a potential relationship between the expression of the genes in metabolic processes and insecticide resistance in the studied strain. These results may contribute to the understanding of the mechanisms of insecticide resistance in .

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.18-0607
2019-03-04
2020-09-19
Loading full text...

Full text loading...

/deliver/fulltext/14761645/100/5/tpmd180607.html?itemId=/content/journals/10.4269/ajtmh.18-0607&mimeType=html&fmt=ahah

References

  1. World Health Organization, 2009. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control. Geneva Switzerland: WHO, 1160.
    [Google Scholar]
  2. Phillips ML, 2008. Dengue reborn: widespread resurgence of a resilient vector. Environ Health Perspect 116: A382A388.
    [Google Scholar]
  3. Soderlund DM, Bloomquist JR, 1990. Molecular mechanisms of insecticide resistance. Roush RT, Tabashnik BE, eds. Pesticide Resistance in Arthropods. London, United Kingdom: Chapman and Hall, 5896.
    [Google Scholar]
  4. Hemingway J, Hawkes NJ, McCarroll L, Ranson H, 2004. The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol 34: 653655.
    [Google Scholar]
  5. Feyereisen R, 2005. Insect cytochrome P450. Gilbert LI, Iatrou K, Gill SS, eds. Comprehensive Molecular Insect Science, Vol. 4. Oxford, United Kingdom: Elsevier, 177.
    [Google Scholar]
  6. Li X, Schuler MA, Berenbaum MR, 2007. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol 52: 231253.
    [Google Scholar]
  7. Nkya TE, Akhouayri I, Kisinza W, David JP, 2013. Impact of environment on mosquito response to pyrethroid insecticides: facts, evidences and prospects. Insect Biochem Mol Biol 43: 407416.
    [Google Scholar]
  8. Poupardin R, Reynaud S, Strode C, Ranson H, Vontas J, David JP, 2008. Cross-induction of detoxification genes by environmental xenobiotics and insecticides in the mosquito Aedes aegypti: impact on larval tolerance to chemical insecticides. Insect Biochem Mol Biol 38: 540551.
    [Google Scholar]
  9. Poupardin R, Riaz MA, Vontas J, David JP, Reynaud S, 2010. Transcription profiling of eleven cytochrome P450s potentially involved in xenobiotic metabolism in the mosquito Aedes aegypti. Insect Mol Biol 19: 185193.
    [Google Scholar]
  10. Riaz MA, Poupardin R, Reynaud S, Strode C, Ranson H, David JP, 2009. Impact of glyphosate and benzo[a]pyrene on the tolerance of mosquito larvae to chemical insecticides. Role of detoxification genes in response to xenobiotics. Aquat Toxicol 93: 6169.
    [Google Scholar]
  11. Scott JG, 1999. Cytochromes P450 and insecticide resistance. Insect Biochem Mol Biol 29: 757777.
    [Google Scholar]
  12. David JP, Faucon F, Chandor-Proust A, Poupardin R, Riaz MA, Bonin A, Navratil V, Reynaud S, 2014. Comparative analysis of response to selection with three insecticides in the dengue mosquito Aedes aegypti using mRNA sequencing. BMC Genomics 15: 174.
    [Google Scholar]
  13. Carino FA, Koener JF, Plapp FW Jr., Feyereisen R, 1994. Constitutive overexpression of the cytochrome P450 gene CYP6A1 in a house fly strain with metabolic resistance to insecticides. Insect Biochem Mol Biol 24: 411418.
    [Google Scholar]
  14. Liu N, Scott JG, 1997. Phenobarbital induction of CYP6D1 is due to a trans acting factor on autosome 2 in house flies, Musca domestica. Insect Mol Biol 6: 7781.
    [Google Scholar]
  15. Liu N, Scott JG, 1998. Increased transcription of CYP6D1 causes cytochrome P450-mediated insecticide resistance in house fly. Insect Biochem Mol Biol 28: 531535.
    [Google Scholar]
  16. Kasai S, Weerashinghe IS, Shono T, Yamakawa M, 2000. Molecular cloning, nucleotide sequence, and gene expression of a cytochrome P450 (CYP6F1) from the pyrethroid-resistant mosquito, Culex quinquefasciatus say. Insect Biochem Mol Biol 30: 163171.
    [Google Scholar]
  17. Scott JG, Wen Z, 2001. Cytochromes P450 of insects: the tip of the iceberg. Pest Manag Sci 57: 958967.
    [Google Scholar]
  18. Feyereisen R, 2015. Insect P450 inhibitors and insecticides: challenges and opportunities. Pest Manag Sci 71: 793800.
    [Google Scholar]
  19. Strode C et al., 2008. Genomic analysis of detoxification genes in the mosquito Aedes aegypti. Insect Biochem Mol Biol 38: 113123.
    [Google Scholar]
  20. Marcombe S et al., 2009. Exploring the molecular basis of insecticide resistance in the dengue vector Aedes aegypti: a case study in Martinique island (French West Indies). BMC Genomics 10: 494.
    [Google Scholar]
  21. Bariami V, Jones CM, Poupardin R, Vontas J, Ranson H, 2012. Gene amplification, ABC transporters and cytochrome P450s: unraveling the molecular basis of pyrethroid resistance in the dengue vector, Aedes aegypti. PLoS Negl Trop Dis 6: e1692.
    [Google Scholar]
  22. David JP, Strode C, Vontas J, Nikou D, Vaughan A, Pignatelli PM, Louis C, Hemingway J, Ranson H, 2005. The Anopheles gambiae detoxification chip: a highly specific microarray to study metabolic-based insecticide resistance in malaria vectors. Proc Nat Acad Sci USA 102: 40804084.
    [Google Scholar]
  23. Enayati AA, Ranson H, Hemingway J, 2005. Insect glutathione transferases and insecticide resistance. Insect Mol Biol 14: 38.
    [Google Scholar]
  24. Lumjuan N, McCarroll L, Prapanthadara LA, Hemingway J, Ranson H, 2005. Elevated activity of an epsilon class glutathione transferase confers DDT resistance in the dengue vector, Aedes aegypti. Insect Biochem Mol Biol 35: 861871.
    [Google Scholar]
  25. Ranson H, Hemingway J, 2005. Mosquito glutathione transferases. Methods Enzymol 401: 226241.
    [Google Scholar]
  26. Muller P, Donnelly MJ, Ranson H, 2007. Transcription profiling of a recently colonised pyrethroid resistant Anopheles gambiae strain from Ghana. BMC Genomics 8: 36.
    [Google Scholar]
  27. Muller P, Chouaïbou M, Pignatelli P, Etang J, Walker ED, Donnelly MJ, Simard F, Ranson H, 2008. Pyrethroid tolerance is associated with elevated expression of antioxidants and agricultural practice in Anopheles arabiensis sampled from an area of cotton fields in northern Cameroon. Mol Ecol 17: 11451155.
    [Google Scholar]
  28. Marcombe S et al., 2012. Insecticide resistance in the dengue vector Aedes aegypti from Martinique: distribution, mechanisms and relations with environmental factors. PLoS One 7: e30989.
    [Google Scholar]
  29. Vontas JG, Small GJ, Hemingway J, 2001. Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochem J 357: 6572.
    [Google Scholar]
  30. Kostaropoulos I, Papadopoulos AI, Metaxakis A, Boukouvala E, Papadopoulou-Mourkidou E, 2001. Glutathione S-transferase in the defence against pyrethroids in insects. Insect Biochem Mol Biol 31: 313319.
    [Google Scholar]
  31. Ranson H, Claudianos C, Ortelli F, Abgrall C, Hemingway J, Sharakhova MV, Unger MF, Collins FH, Feyereisen R, 2002. Evolution of supergene families associated with insecticide resistance. Science 298: 179181.
    [Google Scholar]
  32. Ortelli F, Rossiter LC, Vontas J, Ranson H, Hemingway J, 2003. Heterologous expression of four glutathione transferase genes genetically linked to a major insecticide-resistance locus from the malaria vector Anopheles gambiae. Biochem J 373: 957963.
    [Google Scholar]
  33. Lumjuan N, Rajatileka S, Changsom D, Wicheer J, Leelapat P, Prapanthadara LA, Somboon P, Lycett G, Ranson H, 2011. The role of the Aedes aegypti epsilon glutathione transferases in conferring resistance to DDT and pyrethroid insecticides. Insect Biochem Mol Biol 41: 203209.
    [Google Scholar]
  34. Holt RA et al., 2002. The genome sequence of the malaria mosquito Anopheles gambiae. Science 298: 129149.
    [Google Scholar]
  35. Nene V et al., 2007. Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316: 17181723.
    [Google Scholar]
  36. Arensburger P et al., 2010. Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics. Science 330: 8688.
    [Google Scholar]
  37. David JP, Ismail HM, Chandor-Proust A, Paine MJ, 2013. Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on earth. Philos Trans R Soc Lond B Biol Sci 368: 20120429.
    [Google Scholar]
  38. Chiu TL, Wen Z, Rupasinghe SG, Schuler MA, 2008. Comparative molecular modeling of Anopheles gambiae CYP6Z1, a mosquito P450 capable of metabolizing DDT. Proc Natl Acad Sci USA 105: 88558860.
    [Google Scholar]
  39. Hardstone MC, Komagata O, Kasai S, Tomita T, Scott JG, 2010. Use of isogenic strains indicates CYP9M10 is linked to permethrin resistance in Culex pipiens quinquefasciatus. Insect Mol Biol 19: 717726.
    [Google Scholar]
  40. Wang Z, Gerstein M, Snyder M, 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10: 5763.
    [Google Scholar]
  41. Wilhelm BT, Landry JR, 2009. RNA-seq-quantitative measurement of expression through massively parallel RNA-sequencing. Methods 48: 249257.
    [Google Scholar]
  42. Ozsolak F, Milos PM, 2011. RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12: 8788.
    [Google Scholar]
  43. Ministry of Health, 2016. Ministry of Health Annual Report 2016. Hanoi, Vietnam: MOH Vietnam.
    [Google Scholar]
  44. Kawada H, Higa Y, Nguyen YT, Tran SH, Nguyen HT, Takagi M, 2009. Nationwide investigation of the pyrethroid susceptibility of mosquito larvae collected from used tires in Vietnam. PLoS Negl Trop Dis 3: e391.
    [Google Scholar]
  45. Huber K, Le Loan L, Hoang TH, Tien TK, Rodhain F, Failloux AB, 2003. Aedes aegypti in south Vietnam: ecology, genetic structure, vectorial competence and resistance to insecticides. South East Asian J Trop Med Public Health 34: 8186.
    [Google Scholar]
  46. Bingham G, Strode C, Tran L, Khoa PT, Jamet HP, 2011. Can piperonyl butoxide enhance the efficacy of pyrethroids against pyrethroid-resistant Aedes aegypti? Trop Med Int Health 16: 492500.
    [Google Scholar]
  47. Vu DH, Nguyen TBN, Do TH, Nguyen TBL, 2004. Susceptibility of Aedes aegypti to insecticides in Viet Nam. Dengue Bull 28: 179183.
    [Google Scholar]
  48. Khoa PT, Hieu HV, Hung MN, 2016. Major resistant mechanism to insecticides of Aedes aegypti mosquito: a vector of dengue and Zika virus in Vietnam. SM Trop Med J 1: 1010.
    [Google Scholar]
  49. Tran TD, Nguyen VD, Vu DC, Ho DT, 2016. Mapping insecticide resistance in dengue vectors in the northern Viet Nam, 2010–2013. Vector Biol J 1: 1.
    [Google Scholar]
  50. Lien NTK, Ngoc NTH, Hien NT, Hoang NH, Binh NTH, 2018. Two novel mutations in the voltage-gated sodium channel associated with knockdown resistance (kdr) in the dengue vector Aedes aegypti in Vietnam. J Vector Ecol 43: 184189.
    [Google Scholar]
  51. Rueda LM, 2004. Pictorial keys for the identification of mosquitoes (Diptera: Culicidae) associated with dengue virus transmission. Zootaxa 589: 1.
    [Google Scholar]
  52. World Health Organization, 2016. Test Procedures for Insecticide Resistance Monitoring in Malaria Vector Mosquitoes. Geneva, Switzerland: WHO.
    [Google Scholar]
  53. Trapnell C, Pachter L, Salzberg SL, 2009. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25: 11051111.
    [Google Scholar]
  54. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M, 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 36743676.
    [Google Scholar]
  55. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B, 2008. Mapping and quantifying mammalian transcriptomes by RNAseq. Nat Methods 5: 621628.
    [Google Scholar]
  56. Wang K, Li M, Hakonarson H, 2010. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38: e164.
    [Google Scholar]
  57. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M, 2012. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40: 109114.
    [Google Scholar]
  58. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R; 1000 Genome Project Data Processing Subgroup, 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25: 20782079.
    [Google Scholar]
  59. Duong TT, Ngoc NTH, Binh NTH, Kien LT, Khiet DM, Lien NTK, 2018. Assessment responsibility of Aedes aegypti with insecticide in some study sides by real-time PCR. J Malar Parasite Dis Control 3: 7481.
    [Google Scholar]
  60. David JP, Coissac E, Melodelima C, Poupardin R, Riaz MA, Chandor-Proust A, Reynaud S, 2010. Transcriptome response to pollutants and insecticides in the dengue vector Aedes aegypti using next-generation sequencing technology. BMC Genomics 11: 216.
    [Google Scholar]
  61. Vontas J, Ranson H, Alphey L, 2010. Transcriptomics and disease vector control. BMC Biol 8: 52.
    [Google Scholar]
  62. Brooke BD, Koekemoer LL, 2010. Major effect genes or loose confederations? The development of insecticide resistance in the malaria vector Anopheles gambiae. Parasit Vectors 3: 74.
    [Google Scholar]
  63. Stevenson BJ et al., 2011. Cytochrome P450 6M2 from the malaria vector Anopheles gambiae metabolizes pyrethroids: sequential metabolism of deltamethrin revealed. Insect Biochem Mol Biol 41: 492502.
    [Google Scholar]
  64. Lima VS, Pinto AC, Rafael MS, 2015. Effect of isodillapiole on the expression of the insecticide resistance genes GSTE7 and CYP6N12 in Aedes aegypti from central Amazonia. Genet Mol Res 14: 1672816735.
    [Google Scholar]
  65. Ahmad M, Denholm I, Bromilow RH, 2006. Delayed cuticular penetration and enhanced metabolism of deltamethrin in pyrethroid-resistant strains of Helicoverpa armigera from China and Pakistan. Pest Manag Sci 62: 805810.
    [Google Scholar]
  66. Lin Y, Jin T, Zeng L, Lu Y, 2012. Cuticular penetration of b-cypermethrin in insecticide-susceptible and resistant strains of Bactrocera dorsalis. Pestic Biochem Physiol 103: 189193.
    [Google Scholar]
  67. Wood OR, Hanrahan S, Coetzee M, Koekemoer LL, Brooke BD, 2010. Cuticle thickening associated with pyrethroid resistance in the major malaria vector Anopheles funestus. Parasit Vectors 3: 67.
    [Google Scholar]
  68. Gregory R et al., 2011. A de novo expression profiling of Anopheles funestus, malaria vector in Africa, using 454 pyrosequencing. PLoS One 6: e17418.
    [Google Scholar]
  69. Balabanidou V et al., 2016. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. Proc Natl Acad Sci USA 113: 92689273.
    [Google Scholar]
  70. Yahouédo GA, Chandre F, Rossignol M, Ginibre C, Balabanidou V, Mendez NGA, Pigeon O, Vontas J, Cornelie S, 2017. Contributions of cuticle permeability and enzyme detoxification to pyrethroid resistance in the major malaria vector Anopheles gambiae. Sci Rep 7: 11091.
    [Google Scholar]
  71. Kasai S, Komagata O, Itokawa K, Shono T, Ng LC, Kobayashi M, Tomita T, 2014. Mechanisms of pyrethroid resistance in the dengue mosquito vector, Aedes aegypti: target site insensitivity, penetration, and metabolism. PLoS Negl Trop Dis 8: e2948.
    [Google Scholar]
  72. Riaz MA, Chandor-Proust A, Dauphin-Villemant C, Poupardin R, Jones CM, Strode C, Régent-Kloeckner M, David JP, Reynaud S, 2013. Molecular mechanisms associated with increased tolerance to the neonicotinoid insecticide imidacloprid in the dengue vector Aedes aegypti. Aquat Toxicol 126: 326337.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.18-0607
Loading
/content/journals/10.4269/ajtmh.18-0607
Loading

Data & Media loading...

  • Received : 23 Jul 2018
  • Accepted : 29 Dec 2018
  • Published online : 04 Mar 2019
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error