Volume 99, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645
Preview this article:
Zoom in

The Potential for Testing Stool to Reduce Tuberculosis Missed Diagnoses and Misdiagnoses, Page 1 of 1

| /docserver/preview/fulltext/14761645/99/2/tpmd180507-1.gif

There is no abstract available for this article.
Use the preview function to the left.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Evans CA, , 2011. GeneXpert—a game-changer for tuberculosis control? PLoS Med 8: e1001064. [Google Scholar]
  2. McCarthy K, Fielding K, Churchyard GJ, Grant AD, , 2018. Empiric tuberculosis treatment in South African primary health care facilities—for whom, where, when and why: implications for the development of tuberculosis diagnostic tests. PLoS One 13: e0191608. [Google Scholar]
  3. Wingfield T, Boccia D, Tovar M, Gavino A, Zevallos K, Montoya R, Lönnroth K, Evans CA, , 2014. Defining catastrophic costs and comparing their importance for adverse tuberculosis outcome with multi-drug resistance: a prospective cohort study, Peru. PLoS Med 11: e1001675. [Google Scholar]
  4. Martinson NA, Karstaedt A, Venter WF, Omar T, King P, Mbengo T, Marais E, McIntyre J, Chaisson R, Hale M, , 2007. Causes of death in hospitalized adults with a premortem diagnosis of tuberculosis: an autopsy study. AIDS 21: 20432050. [Google Scholar]
  5. Moore DAJ, 2006. Microscopic-observation drug-susceptibility assay for the diagnosis of TB. N Engl J Med 355: 15391550. [Google Scholar]
  6. DiNardo AR, 2018. Diagnostic and treatment monitoring potential of a stool-based quantitative PCR assay for pulmonary tuberculosis. Am J Trop Med Hyg 99: 310316, doi:10.4269/ajtmh.18-0004. [Google Scholar]
  7. Oberhelman RA, 2015. A controlled study of tuberculosis diagnosis in HIV-infected and uninfected children in Peru. PLoS One 10: e0120915. [Google Scholar]
  8. Burman WJ, Reves RR, , 2000. Review of false-positive cultures for Mycobacterium tuberculosis and recommendations for avoiding unnecessary treatment. Clin Infect Dis 31: 13901395. [Google Scholar]
  9. de Boer AS, Blommerde B, de Haas PEW, Sebek MMGG, Lambregts-van Weezenbeek KSB, Dessens M, van Soolingen D, , 2002. False-positive Mycobacterium tuberculosis cultures in 44 laboratories in The Netherlands (1993 to 2000): incidence, risk factors, and consequences. J Clin Microbiol 40: 40044009. [Google Scholar]
  10. Steingart KR, Schiller I, Horne DJ, Pai M, Boehme CC, Dendukuri N, , 2014. Xpert® MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev 1: CD009593. [Google Scholar]
  11. Mayta H, 2003. Evaluation of a PCR-based universal heteroduplex generator assay as a tool for rapid detection of multidrug-resistant Mycobacterium tuberculosis in Peru. J Clin Microbiol 41: 57745777. [Google Scholar]
  12. Datta S, Shah L, Gilman RH, Evans CA, , 2017. Comparison of sputum collection methods for tuberculosis diagnosis: a systematic review and pairwise and network meta-analysis. Lancet Glob Health 5: e760e771. [Google Scholar]
  13. Chow F, Espiritu N, Gilman RH, Gutierrez R, Lopez S, Escombe AR, Evans CAW, Moore DAJ, , 2006. La cuerda dulce—a tolerability and acceptability study of a novel approach to specimen collection for diagnosis of paediatric pulmonary tuberculosis. BMC Infect Dis 6: 67. [Google Scholar]
  14. Paris L, 2017. Urine lipoarabinomannan glycan in HIV-negative patients with pulmonary tuberculosis correlates with disease severity. Sci Transl Med 9: eaal2807. [Google Scholar]
  15. Wolf H, 2008. Diagnosis of pediatric pulmonary tuberculosis by stool PCR. Am J Trop Med Hyg 79: 893898. [Google Scholar]
  16. Cordova J, 2010. Evaluation of molecular tools for detection and drug susceptibility testing of Mycobacterium tuberculosis in stool specimens from patients with pulmonary tuberculosis. J Clin Microbiol 48: 18201826. [Google Scholar]
  17. Oberhelman RA, 2010. Diagnostic approaches for paediatric tuberculosis by use of different specimen types, culture methods, and PCR: a prospective case-control study. Lancet Infect Dis 10: 612620. [Google Scholar]
  18. Nicol MP, Spiers K, Workman L, Isaacs W, Munro J, Black F, Zemanay W, Zar HJ, , 2013. Xpert MTB/RIF testing of stool samples for the diagnosis of pulmonary tuberculosis in children. Clin Infect Dis 57: e18e21. [Google Scholar]
  19. LaCourse SM, 2018. Stool Xpert MTB/RIF and urine lipoarabinomannan for the diagnosis of tuberculosis in hospitalized HIV-infected children. AIDS 32: 6978. [Google Scholar]
  20. Ramos E, 2010. Optimizing tuberculosis testing for basic laboratories. Am J Trop Med Hyg 83: 896901. [Google Scholar]
  21. Friedrich SO, Pan African Consortium for the Evaluation of Anti-tuberculosis Antibiotics (PanACEA) , 2013. Assessment of the sensitivity and specificity of Xpert MTB/RIF assay as an early sputum biomarker of response to tuberculosis treatment. Lancet. Respir Med 1: 462470. [Google Scholar]
  22. Datta S, Sherman JM, Bravard M, Valencia T, Gilman RH, Evans CA, , 2015. Clinical evaluation of tuberculosis viability microscopy for assessing treatment response. Clin Infect Dis 60: 11861195. [Google Scholar]
  23. Hellyer TJ, DesJardin LE, Teixeira L, Perkins MD, Cave MD, Eisenach KD, , 1999. Detection of viable Mycobacterium tuberculosis by reverse transcriptase-strand displacement amplification of mRNA. J Clin Microbiol 37: 518523. [Google Scholar]
  • Received : 12 Jun 2018
  • Accepted : 14 Jun 2018
  • Published online : 02 Aug 2018

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error