1921
Volume 100, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

The burden of () malaria in Kenya is decreasing; however, it is still one of the top 10 causes of morbidity, particularly in regions of western Kenya. Between April 2015 and June 2016, we enrolled 965 apparently healthy children aged 0–15 years in former Nyanza and Western Provinces in Kenya to characterize the demographic, geographic, and household risk factors of asymptomatic malaria as part of an epidemiologic study to investigate the risk factors for endemic Burkitt lymphoma. The children were sampled using a stratified, multistage cluster sampling survey design. Malaria was assessed by rapid diagnostic test (RDT) and thick-film microscopy (TFM). Primary analyses of malaria prevalence (pfPR) are based on RDT. Associations between weighted pfPR and potential risk factors were evaluated using logistic regression, accounting for the survey design. malaria prevalence was 36.0% (27.5%, 44.5%) by RDT and 22.3% (16.0%, 28.6%) by TFM. malaria prevalence was positively associated with living in the lake-endemic area (adjusted odds ratio [aOR] 3.46; 95% confidence interval [95% CI] 1.63, 7.37), paternal occupation as peasant farmer (aOR 1.87; 1.08, 3.26) or manual laborer (aOR 1.83; 1.00, 3.37), and keeping dogs (aOR 1.62; 0.98–2.69) or cows (aOR 1.52; 0.96–2.40) inside or near the household. malaria prevalence was inversely associated with indoor residual insecticide spraying (IRS) (aOR 0.44; 0.19, 1.01), having a household connected to electricity (aOR 0.47; 0.22, 0.98), and a household with two (aOR 0.45; 0.22, 0.93) or ≥ three rooms (aOR 0.41; 0.18, 0.93). We report high but geographically heterogeneous pfPR in children in western Kenya and significant associations with IRS and household-level socioeconomic factors.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.18-0481
2018-11-19
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/14761645/100/1/tpmd180481.html?itemId=/content/journals/10.4269/ajtmh.18-0481&mimeType=html&fmt=ahah

References

  1. White NJ, Pukrittayakamee S, Hien TT, Faiz MA, Mokuolu OA, Dondorp AM, , 2014. Malaria. Lancet 383: 723735. [Google Scholar]
  2. World Health Organization, 2017. World Malaria Report 2017. Geneva, Switzerland: WHO. Available at: http://apps.who.int/iris/bitstream/handle/10665/259492/9789241565523-eng.pdf;jsessionid=78C722919AE7E766074B0161AC904208?sequence=1. Accessed April 20, 2017.
  3. Snow RW, Sartorius B, Kyalo D, Maina J, Amratia P, Mundia CW, Bejon P, Noor AM, , 2017. The prevalence of Plasmodium falciparum in sub-Saharan Africa since 1900. Nature 550: 515518. [Google Scholar]
  4. Kenya National Bureau of Statistics, 2015. National Top 10 Incidences of Diseases: 2009 to 2015. Available at: https://knbs.or.ke/visualizations/?page_id=3215. Accessed March 5, 2018.
  5. Noor AM, Gething PW, Alegana VA, Patil AP, Hay SI, Muchiri E, Juma E, Snow RW, , 2009. The risks of malaria infection in Kenya in 2009. BMC Infect Dis 9: 180. [Google Scholar]
  6. National Malaria Control Programme, 2015. Kenya Malaria Indicator Survey 2015. Available at: https://dhsprogram.com/pubs/pdf/MIS22/MIS22.pdf. Accessed April 20, 2017.
  7. Goncalves BP, 2017. Examining the human infectious reservoir for Plasmodium falciparum malaria in areas of differing transmission intensity. Nat Commun 8: 1133. [Google Scholar]
  8. Lindblade KA, Steinhardt L, Samuels A, Kachur SP, Slutsker L, , 2013. The silent threat: asymptomatic parasitemia and malaria transmission. Expert Rev Anti Infect Ther 11: 623639. [Google Scholar]
  9. Galatas B, Bassat Q, Mayor A, , 2016. Malaria parasites in the asymptomatic: looking for the hay in the Haystack. Trends Parasitol 32: 296308. [Google Scholar]
  10. Walldorf JA, 2015. School-age children are a reservoir of malaria infection in Malawi. PLoS One 10: e0134061. [Google Scholar]
  11. Zhou Z, 2016. Assessment of submicroscopic infections and gametocyte carriage of Plasmodium falciparum during peak malaria transmission season in a community-based cross-sectional survey in western Kenya, 2012. Malar J 15: 421. [Google Scholar]
  12. Coalson JE, 2016. High prevalence of Plasmodium falciparum gametocyte infections in school-age children using molecular detection: patterns and predictors of risk from a cross-sectional study in southern Malawi. Malar J 15: 527. [Google Scholar]
  13. Robinson A, 2018. Plasmodium-associated changes in human odor attract mosquitoes. Proc Natl Acad Sci USA 115: E4209E4218. [Google Scholar]
  14. Wesolowski A, Eagle N, Tatem AJ, Smith DL, Noor AM, Snow RW, Buckee CO, , 2012. Quantifying the impact of human mobility on malaria. Science 338: 267270. [Google Scholar]
  15. Platt A, Obala AA, MacIntyre C, Otsyula B, Meara WPO, , 2018. Dynamic malaria hotspots in an open cohort in western Kenya. Sci Rep 8: 647. [Google Scholar]
  16. The malERA Refresh Consultative Panel on Characterising the Reservoir and Measuring Transmission, 2017. malERA: an updated research agenda for characterising the reservoir and measuring transmission in malaria elimination and eradication. PLoS Med 14: e1002452. [Google Scholar]
  17. Legason ID, 2017. Evaluating the causal link between malaria infection and endemic Burkitt lymphoma in northern Uganda: a mendelian randomization study. EBioMedicine 25: 5865. [Google Scholar]
  18. Ernst KC, Adoka SO, Kowuor DO, Wilson ML, John CC, , 2006. Malaria hotspot areas in a highland Kenya site are consistent in epidemic and non-epidemic years and are associated with ecological factors. Malar J 5: 78. [Google Scholar]
  19. O’Reilly CE, 2012. Risk factors for death among children less than 5 years old hospitalized with diarrhea in rural western Kenya, 2005–2007: a cohort study. PLoS Med 9: e1001256. [Google Scholar]
  20. Kipanga PN, Omondi D, Mireji PO, Sawa P, Masiga DK, Villinger J, , 2014. High-resolution melting analysis reveals low Plasmodium parasitaemia infections among microscopically negative febrile patients in western Kenya. Malar J 13: 429. [Google Scholar]
  21. Kepha S, 2016. Plasmodium falciparum parasitaemia and clinical malaria among school children living in a high transmission setting in western Kenya. Malar J 15: 157. [Google Scholar]
  22. Stevenson JC, 2013. Reliability of school surveys in estimating geographic variation in malaria transmission in the western Kenyan highlands. PLoS One 8: e77641. [Google Scholar]
  23. Simbiri KO, 2014. Burkitt lymphoma research in east Africa: highlights from the 9(th) African organization for research and training in cancer conference held in Durban, South Africa in 2013. Infect Agent Cancer 9: 32. [Google Scholar]
  24. Minakawa N, Sonye G, Mogi M, Githeko A, Yan G, , 2002. The effects of climatic factors on the distribution and abundance of malaria vectors in Kenya. J Med Entomol 39: 833841. [Google Scholar]
  25. Maziarz M, 2017. Age and geographic patterns of Plasmodium falciparum malaria infection in a representative sample of children living in Burkitt lymphoma-endemic areas of northern Uganda. Malar J 16: 124. [Google Scholar]
  26. Kenya National Bureau of Statistics, 2013. Overview of Census 2009. Available at: https://www.knbs.or.ke/overview-of-census-2009/. Accessed April 16, 2018.
  27. World Health Organization, 2015. WHO Prequalification of in vitro Diagnostics Programmes Public Report Product: CareStart Malaria HRP2/pLDH (Pf/PAN) COMBO Number: PQDx 0136-049-00. Geneva, Switzerland: WHO. Available at: http://www.who.int/diagnostics_laboratory/evaluations/150528_final_report_0136_049_00_malaria_hrp2pldh_pfpan.pdf.
  28. Ochola LB, Vounatsou P, Smith T, Mabaso ML, Newton CR, , 2006. The reliability of diagnostic techniques in the diagnosis and management of malaria in the absence of a gold standard. Lancet Infect Dis 6: 582588. [Google Scholar]
  29. Wongsrichanalai C, Barcus MJ, Muth S, Sutamihardja A, Wernsdorfer WH, , 2007. A review of malaria diagnostic tools: microscopy and rapid diagnostic test (RDT). Am J Trop Med Hyg 77: 119127. [Google Scholar]
  30. World Health Organization Informal Consultation on Recent Advances in Diagnostic Techniques and Vaccines for Malaria, 1996. A rapid dipstick antigen capture assay for the diagnosis of falciparum malaria. WHO informal consultation on recent advances in diagnostic techniques and vaccines for malaria. Available at: http://www.who.int/iris/handle/10665/49976 Bull World Health Organ 74: 4754. Accessed April 20, 2017. [Google Scholar]
  31. Beadle C, Long GW, Weiss WR, McElroy PD, Maret SM, Oloo AJ, Hoffman SL, , 1994. Diagnosis of malaria by detection of Plasmodium falciparum HRP-2 antigen with a rapid dipstick antigen-capture assay. Lancet 343: 564568. [Google Scholar]
  32. Mayxay M, Pukrittayakamee S, Chotivanich K, Looareesuwan S, White NJ, , 2001. Persistence of Plasmodium falciparum HRP-2 in successfully treated acute falciparum malaria. Trans R Soc Trop Med Hyg 95: 179182. [Google Scholar]
  33. Schellenberg JR, Smith T, Alonso PL, Hayes RJ, , 1994. What is clinical malaria? Finding case definitions for field research in highly endemic areas. Parasitol Today 10: 439442. [Google Scholar]
  34. Rainey JJ, Omenah D, Sumba PO, Moormann AM, Rochford R, Wilson ML, , 2007. Spatial clustering of endemic Burkitt’s lymphoma in high-risk regions of Kenya. Int J Cancer 120: 121127. [Google Scholar]
  35. Kafuko GW, Burkitt DP, , 1970. Burkitt’s lymphoma and malaria. Int J Cancer 6: 19. [Google Scholar]
  36. Morrow RH, Jr., 1985. Epidemiological evidence for the role of falciparum malaria in the pathogenesis of Burkitt’s lymphoma. IARC Sci Publ 60: 177186. [Google Scholar]
  37. Emmanuel B, 2011. African Burkitt lymphoma: age-specific risk and correlations with malaria biomarkers. Am J Trop Med Hyg 84: 397401. [Google Scholar]
  38. Buckle G, 2016. Factors influencing survival among Kenyan children diagnosed with endemic Burkitt lymphoma between 2003 and 2011: a historical cohort study. Int J Cancer 139: 12311240. [Google Scholar]
  39. Rodriguez-Barraquer I, 2016. Quantifying heterogeneous malaria exposure and clinical protection in a cohort of Ugandan children. J Infect Dis 214: 10721080. [Google Scholar]
  40. Johnston WT, 2014. Relationship between Plasmodium falciparum malaria prevalence, genetic diversity and endemic Burkitt lymphoma in Malawi. Sci Rep 4: 3741. [Google Scholar]
  41. Noor AM, Amin AA, Akhwale WS, Snow RW, , 2007. Increasing coverage and decreasing inequity in insecticide-treated bed net use among rural Kenyan children. PLoS Med 4: e255. [Google Scholar]
  42. Fillinger U, Ndenga B, Githeko A, Lindsay SW, , 2009. Integrated malaria vector control with microbial larvicides and insecticide-treated nets in western Kenya: a controlled trial. Bull World Health Organ 87: 655665. [Google Scholar]
  43. Gimnig JE, 2016. The effect of indoor residual spraying on the prevalence of malaria parasite infection, clinical malaria and anemia in an area of perennial transmission and moderate coverage of insecticide treated nets in western Kenya. PLoS One 11: e0145282. [Google Scholar]
  44. Steinhardt LC, 2013. The effect of indoor residual spraying on malaria and anemia in a high-transmission area of northern Uganda. Am J Trop Med Hyg 88: 855861. [Google Scholar]
  45. Rek JC, 2018. Rapid improvements to rural Ugandan housing and their association with malaria from intense to reduced transmission: a cohort study. Lancet Planet Health 2: e83e94. [Google Scholar]
  46. Dida GO, Anyona DN, Abuom PO, Akoko D, Adoka SO, Matano AS, Owuor PO, Ouma C, , 2018. Spatial distribution and habitat characterization of mosquito species during the dry season along the Mara River and its tributaries, in Kenya and Tanzania. Infect Dis Poverty 7: 2. [Google Scholar]
  47. Zhou G, Munga S, Minakawa N, Githeko AK, Yan G, , 2007. Spatial relationship between adult malaria vector abundance and environmental factors in western Kenya highlands. Am J Trop Med Hyg 77: 2935. [Google Scholar]
  48. Hamer GL, 2014. Dispersal of adult Culex mosquitoes in an urban west Nile virus hotspot: a mark-capture study incorporating stable isotope enrichment of natural larval habitats. PLoS Negl Trop Dis 8: e2768. [Google Scholar]
  49. Collins WE, Warren M, Sullivan JS, Galland GG, , 2001. Plasmodium coatneyi: observations on periodicity, mosquito infection, and transmission to Macaca mulatta monkeys. Am J Trop Med Hyg 64: 101110. [Google Scholar]
  50. Donnelly B, Berrang-Ford L, Ross NA, Michel P, , 2015. A systematic, realist review of zooprophylaxis for malaria control. Malar J 14: 313. [Google Scholar]
  51. Kaburi JC, Githuto JN, Muthami L, Ngure PK, Mueke JM, Mwandawiro CS, , 2009. Effects of long-lasting insecticidal nets and zooprophylaxis on mosquito feeding behaviour and density in Mwea, central Kenya. J Vector Borne Dis 46: 184190. [Google Scholar]
  52. Sota T, Mogi M, , 1989. Effectiveness of zooprophylaxis in malaria control: a theoretical inquiry, with a model for mosquito populations with two bloodmeal hosts. Med Vet Entomol 3: 337345. [Google Scholar]
  53. Bouma M, Rowland M, , 1995. Failure of passive zooprophylaxis: cattle ownership in Pakistan is associated with a higher prevalence of malaria. Trans R Soc Trop Med Hyg 89: 351353. [Google Scholar]
  54. Iwashita H, Dida GO, Sonye GO, Sunahara T, Futami K, Njenga SM, Chaves LF, Minakawa N, , 2014. Push by a net, pull by a cow: can zooprophylaxis enhance the impact of insecticide treated bed nets on malaria control? Parasit Vectors 7: 52. [Google Scholar]
  55. Githinji S, Noor AM, Malinga J, Macharia PM, Kiptui R, Omar A, Njagi K, Waqo E, Snow RW, , 2016. A national health facility survey of malaria infection among febrile patients in Kenya, 2014. Malar J 15: 591. [Google Scholar]
  56. Brooker S, Kolaczinski JH, Gitonga CW, Noor AM, Snow RW, , 2009. The use of schools for malaria surveillance and programme evaluation in Africa. Malar J 8: 231. [Google Scholar]
  57. Mala AO, Irungu LW, Shililu JI, Muturi EJ, Mbogo CM, Njagi JK, Mukabana WR, Githure JI, , 2011. Plasmodium falciparum transmission and aridity: a Kenyan experience from the dry lands of Baringo and its implications for Anopheles arabiensis control. Malar J 10: 121. [Google Scholar]
  58. Nah K, Kim Y, Lee JM, , 2010. The dilution effect of the domestic animal population on the transmission of P. vivax malaria. J Theor Biol 266: 299306. [Google Scholar]
  59. Wanzira H, Kakuru A, Arinaitwe E, Bigira V, Muhindo MK, Conrad M, Rosenthal PJ, Kamya MR, Tappero JW, Dorsey G, , 2014. Longitudinal outcomes in a cohort of Ugandan children randomized to artemether-lumefantrine versus dihydroartemisinin-piperaquine for the treatment of malaria. Clin Infect Dis 59: 509516. [Google Scholar]
  60. Githinji S, Herbst S, Kistemann T, Noor AM, , 2010. Mosquito nets in a rural area of western Kenya: ownership, use and quality. Malar J 9: 250. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.18-0481
Loading
/content/journals/10.4269/ajtmh.18-0481
Loading

Data & Media loading...

Supplemental Tables

  • Received : 07 Jun 2018
  • Accepted : 07 Aug 2018
  • Published online : 19 Nov 2018

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error