Volume 100, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



More than 200 million people in sub-Saharan Africa are infected with schistosome parasites. Transmission of schistosomiasis occurs when people come into contact with larval schistosomes emitted from freshwater snails in the aquatic environment. Thus, controlling snails through augmenting or restoring their natural enemies, such as native predators and competitors, could offer sustainable control for this human disease. Fishes may reduce schistosomiasis transmission directly, by preying on snails or parasites, or indirectly, by competing with snails for food or by reducing availability of macrophyte habitat (i.e., aquatic plants) where snails feed and reproduce. To identify fishes that might serve as native biological control agents for schistosomiasis in the lower Senegal River basin—one of the highest transmission areas for human schistosomiasis globally—we surveyed the freshwater fish that inhabit shallow, nearshore habitats and conducted multivariate analyses with quantitative diet data for each of the fish species encountered. Ten of the 16 fish species we encountered exhibited diets that may result in direct (predation) and/or indirect (food competition and habitat removal) control of snails. Fish abundance was low, suggesting limited effects on schistosomiasis transmission by the contemporary fish community in the lower Senegal River basin in the wild. Here, we highlight some native species—such as tilapia, West African lungfish, and freshwater prawns—that could be aquacultured for local-scale biological control of schistosomiasis transmission.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Finlay CJ, , 1882. El mosquito hipoteticamente considerado como agente de trasmision de la fiebre amarilla. Anales Real Acad Ci Méd Habana 18: 147169. [Google Scholar]
  2. Ross R, , 1897. On some peculiar pigmented cells found in two mosquitos fed on malarial blood. Br Med J 2: 17861788. [Google Scholar]
  3. Headlee T, , 1945. The Mosquitoes of New Jersey and Their Control. New Brunswick, NJ: Rutgers University Press. [Google Scholar]
  4. Gubler DJ, , 1998. Resurgent vector-borne diseases as a global health problem. Emerg Infect Dis 4: 442450. [Google Scholar]
  5. WHO, 2014. A Global Brief on Vector-borne Diseases. Geneva, Switzerland: WHO Press. [Google Scholar]
  6. Gryseels B, Polman K, Clerinx J, Kestens L, , 2006. Human schistosomiasis. Lancet 368: 11061118. [Google Scholar]
  7. Mitreva M, , 2012. The genome of a blood fluke associated with human cancer. Nat Genet 44: 116118. [Google Scholar]
  8. Amberson JM, Schwarz E, , 1953. On African schistosomiasis. Trans R Soc Trop Med Hyg 47: 451502. [Google Scholar]
  9. Sturrock RF, , 1973. Field studies on the transmission of Schistosoma mansoni and on the bionomics of its intermediate host, Biomphalaria glabrata, on St. Lucia, West Indies. Int J Parasitol 3: 175194. [Google Scholar]
  10. King CH, Dickman K, Tisch DJ, , 2005. Reassessment of the cost of chronic helmintic infection: a meta-analysis of disability-related outcomes in endemic schistosomiasis. Lancet 365: 15611569. [Google Scholar]
  11. King CH, , 2011. Schistosomiasis: challenges and opportunities. The Causes and Impacts of Neglected Tropical and Zoonotic Diseases: Opportunities for Integrated Intervention Strategies. Washington, DC: National Academies Press. [Google Scholar]
  12. Jordan P, , 1985. Schistosomiasis: the St. Lucia Project. Cambridge, United Kingdom: Cambridge University Press. [Google Scholar]
  13. Sokolow SH, 2015. Reduced transmission of human schistosomiasis after restoration of a native river prawn that prey on the snail intermediate host. Proc Natl Acad Sci USA 112: 96509666. [Google Scholar]
  14. Webster BL, Diaw OT, Seye MM, Faye DS, Stothard JR, Sousa-Figueiredo JC, Rollinson D, , 2013. Praziquantel treatment of school children from single and mixed infection foci of urogenital schistosomiasis along the Senegal River basin: monitoring treatment success and re-infection patterns. Acta Trop 128: 292302. [Google Scholar]
  15. WHO, 1993. The control of schistosomiasis. Second report of the WHO expert committee. World Health Organ Tech Rep Ser 830: 186. [Google Scholar]
  16. Secor WE, , 2014. Water-based interventions for schistosomiasis control. Pathog Glob Health 108: 246254. [Google Scholar]
  17. Grimes JET, Croll D, Harrison WE, Utzinger J, Freeman MC, Templeton MR, , 2015. The roles of water, sanitation and hygiene in reducing schistosomiasis: a review. Parasit Vectors 8: 156. [Google Scholar]
  18. Sokolow SH, Wood CL, Jones IJ, Swartz SJ, Lopez M, Hsieh MH, Lafferty KD, Kuris AM, Rickards C, De Leo GA, , 2016. Global assessment of schistosomiasis control over the past century shows targeting the snail intermediate host works best. PLoS Negl Trop Dis 10: e0004794. [Google Scholar]
  19. Sokolow SH, Wood CL, Jones IJ, Lafferty KD, Kuris AM, Hsieh MH, De Leo GA, , 2018. To reduce the global burden of human schistosomiasis, use “old fashioned” snail control. Trends Parasitol 34: 2340. [Google Scholar]
  20. Lo NC, Gurarie D, Yoon N, Coulibaly JT, Bendavid E, Andrews JR, King CH, , 2018. Impact and cost-effectiveness of snail control to achieve disease control targets for schistosomiasis. Proc Natl Acad Sci USA 115: E584E591. [Google Scholar]
  21. Coates D, , 1984. A survey of the fish fauna of Sudanese irrigation systems with reference to the use of fishes in the management of ecological problems (the control of aquatic weeds, malaria and infective schistosomiasis). Fish Manag 15: 8197. [Google Scholar]
  22. Coelho PMZ, Caldeira RL, , 2016. Critical analysis of molluscicide application in schistosomiasis control programs in Brazil. Infect Dis Poverty 5: 57. [Google Scholar]
  23. Eilenberg J, Hajek A, Lomer C, , 2001. Suggestions for unifying the terminology in biological control. BioControl 46: 387400. [Google Scholar]
  24. Thomas JD, Tait AI, , 1984. Control of the snail hosts of schistosomiasis by environmental manipulation: a field and laboratory appraisal in the Ibadan area, Nigeria. Phil Trans R Soc London B Biol Sci 305: 201253. [Google Scholar]
  25. Stauffer JR, Jr. Arnegard ME, Cetron M, Sullivan JJ, Chitsulo LA, Turner GF, Chiotha S, McKaye KR, , 1997. Controlling vectors and hosts of parasitic diseases using fishes: a case history of schistosomiasis in Lake Malaŵi. BioScience 47: 4149. [Google Scholar]
  26. Mkoji GM, 1999. Impact of the crayfish Procambarus clarkii on Schistosoma haematobium transmission in Kenya. Am J Trop Med Hyg 61: 751759. [Google Scholar]
  27. Oliver-Gonzalez J, , 1946. The possible role of the guppy, Lebistes reticulatus, on the biological control of Schistosomiasis mansoni. Science 104: 605. [Google Scholar]
  28. Rowan WB, , 1958. Daily periodicity of Schistosoma mansoni cercariae in Puerto Rican waters. Am J Trop Med Hyg 7: 374381. [Google Scholar]
  29. Pellegrino J, Demaria M, Demoura MF, , 1966. Observations on the predatory activity of Lebistes reticulatus (Peters, 1859) on cercariae of Schistosoma mansoni. Am J Trop Med Hyg 15: 337341. [Google Scholar]
  30. Knight WB, Ritchie LS, Liard F, Chiribog J, , 1970. Cercariophagic activity of guppy fish (Lebistes reticulatus) detected by cercariae labeled with radioselenium (75Se). Am J Trop Med Hyg 19: 620625. [Google Scholar]
  31. Ismail N, , 2003. Miracidiophagic and cercariophagic activity of the fish Gambusia affinis and Oreochromis niloticus and their effect on the infection of Biomphalaria alexandrina by Schistosoma mansoni miracidia. Egypt J Aquat Biol Fish 7: 8798. [Google Scholar]
  32. Jordan P, Christie JD, Unrau GO, , 1980. Schistosomiasis transmission with particular reference to possible ecological and biological methods of control: a review. Acta Trop 37: 95135. [Google Scholar]
  33. Appleton CC, , 1978. Review of literature on abiotic factors influencing the distribution and life cycles of bilharziasis intermediate host snails. Malacol Rev 11: 125. [Google Scholar]
  34. Marti HP, Tanner M, Degremont AA, Freyvogel TA, , 1985. Studies on the ecology of Bulinus globosus, the intermediate host of Schistosoma haematobium in the Ifakara area, Tanzania. Acta Trop 42: 171187. [Google Scholar]
  35. O’Keeffe JH, , 1985a. Population biology of the freshwater snail Bulinus globosus on the Kenya coast: I. Population fluctuations in relation to climate. J Appl Ecol 22: 7384. [Google Scholar]
  36. Kariuki HC, 2004. Distribution patterns and cercarial shedding of Bulinus nasutus and other snails in the Msambweni area, Coast Province, Kenya. Am J Trop Med Hyg 70: 449456. [Google Scholar]
  37. Klump RK, Chu KY, , 1977. Ecological studies of Bulinus rohlfsi, the intermediate host of Schistosoma haematobium in the Volta Lake. Bull World Health Organ 55: 715730. [Google Scholar]
  38. O’Keeffe JH, , 1985b. Population biology of the freshwater snail Bulinus globosus on the Kenya coast: II. Feeding and density effects on population parameters. J Appl Ecol 22: 8590. [Google Scholar]
  39. Boelee E, Laamrani H, , 2004. Environmental control of schistosomiasis through community participation in a Moroccan oasis. Trop Med Int Health 9: 9971004. [Google Scholar]
  40. Sow S, de Vlas SJ, Engels D, Gryseels B, , 2002. Water-related disease patterns before and after the construction of the Diama dam in northern Senegal. Ann Trop Med Parasitol 96: 575586. [Google Scholar]
  41. SNIS, 2009. Annuaire Statistique 2009. Dakar, Republique du Senegal: Ministère de la Santé et de la Prevéntion—Service National de l’Information Sanitaire (SNIS). [Google Scholar]
  42. Paugy D, Lévêque C, Teugels GG, , 2003. The Fresh and Brackish Water Fishes of West Africa. Paris, France: IRD. [Google Scholar]
  43. R Core Team, 2016. R: A Language and Environment for Statistical Computing, R Version 3.3.2. Vienna, Austria: R Foundation for Statistical Computing. [Google Scholar]
  44. Colwell RK, Chao A, Gotelli NJ, Lin SY, Mao CX, Chazdon RL, Longino JT, , 2012. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J Plant Ecol 5: 321. [Google Scholar]
  45. Hsieh TC, Ma KH, Chao A, , 2016. iNEXT: Interpolation and Extrapolation for Species Diversity. R Package Version 2.0.12. The Comprehensive R Archive Network. [Google Scholar]
  46. Fox J, R Core Team , 2016. Car: Companion to Applied Regression. R Package Version 2.1-4. The Comprehensive R Archive Network. [Google Scholar]
  47. Warton DI, Hui FKC, , 2011. The arcsine is asinine: the analysis of proportions in ecology. Ecology 92: 310. [Google Scholar]
  48. Oksanen J, 2016. Vegan: Community Ecology Package. R Package Version 2.4-1. The Comprehensive R Archive Network. [Google Scholar]
  49. De Cáceres M, Sol D, Lapiedra O, Legendre P, , 2011. A framework for estimating niche metrics using the resemblance between qualitative resources. Oikos 120: 13411350. [Google Scholar]
  50. Hyslop EJ, , 1980. Stomach contents analysis—a review of methods and their application. J Fish Biol 17: 411429. [Google Scholar]
  51. Idodo-Umeh G, , 2005. The feeding ecology of mochokid species in River Ase, Niger Delta, Nigeria. Trop Freshwat Biol 14: 7193. [Google Scholar]
  52. De Cáceres M, Jansen F, , 2016. Indicspecies: Relationship Between Species and Groups of Sites R Package Version: 1.7.6. The Comprehensive R Archive Network. [Google Scholar]
  53. Gower JC, , 1971. A general coefficient of similarity and some of its properties. Biometrics 27: 857874. [Google Scholar]
  54. Dorfman D, Sagna A, , 1980. First report of Paradistichodus dimidiatus (Pellegrin), a citharinid fish, in the Senegal River. Bull New Jersey Acad Sci 25: 2324. [Google Scholar]
  55. Norris SM, Douglas ME, , 1992. Geographic variation, taxonomic status, and biogeography of two widely distributed African freshwater fishes: Ctenopoma petherici and C. kingsleyae (Teleostei: Anabantidae). Copeia 1992: 709724. [Google Scholar]
  56. Kaplan AT, Rebhal S, Lafferty KD, Kuris AM, , 2009. Small estuarine fishes feed on large trematode cercariae: lab and field investigations. J Parasitol 95: 477480. [Google Scholar]
  57. Thieltges DW, Amundsen PA, Hechinger RF, Johnson PTJ, Lafferty KD, Mouritsen KN, Preston DL, Reise K, Zander CD, Poulin R, , 2013. Parasites as prey in aquatic food webs: implications for predator infection and parasite transmission. Oikos 122: 14731482. [Google Scholar]
  58. Fagbenro OA, Adedire CO, Aiyegbeni ML, , 2001. Food composition and digestive enzymes in the gut of the African electric catfish, Malapterurus electricus (Gmelin 1789) (Malapteruridae). Trop Zool 14: 16. [Google Scholar]
  59. Sagua VO, , 1979. Observations on the food and feeding habits of the African electric catfish Malapterurus electricus (Gmelin). J Fish Biol 15: 6169. [Google Scholar]
  60. Hickley P, Bailey RG, , 1987. Food and feeding relationships of fish in the Sudd swamps (River Nile, southern Sudan). J Fish Biol 30: 147159. [Google Scholar]
  61. Dadebo E, Gebre-Mariam Z, Ahlgren G, , 2012. Feeding habits of the catfish Synodontis schall (Block & Schneider) (Pisces: Mochokidae) with emphasis on its scale-eating habits in Lake Chamo, Ethiopia. Ethiop J Biol Sci 11: 117132. [Google Scholar]
  62. Akombo PM, Akange ET, Adikwu IA, Araoye PA, , 2014. Length-weight relationship, condition factor and feeding habits of Synodontis schall (Block and Schneider, 1801) in river Beneu at Makurdi, Nigeria. Int J Fish Aquat Stud 1: 4248. [Google Scholar]
  63. Cogels FX, Fraboulet-Jussila S, Varis O, , 2001. Multipurpose use and water quality challenges in Lac de Guiers (Senegal). Water Sci Technol 44: 3546. [Google Scholar]
  64. Diouf PS, Albaret JJ, Pullin RSV, Lazard PJ, Legendre M, Amon Kothias JB, Pauly D, , 1996. Tilapia culture in the Senegal River basin and the causes of its failure, pp. 488–499. In , eds. The Third International Symposium on Tilapia in Aquaculture. Makati City, Philippines and Abidjan, Côte d’Ivoire: ICLARM, 41, 575. [Google Scholar]
  65. McKaye KR, Stauffer JR, Louda SM, , 1986. Fish predation as a factor in the distribution of Lake Malawi gastropods. Exp Biol 45: 279289. [Google Scholar]
  66. Madsen H, Stauffer JR, , 2011. Density of Trematocranus placodon (Pisces: Cichlidae): a predictor of density of the schistosome intermediate host, Bulinus nyassanus (Gastropoda: Planorbidae), in Lake Malawi. Ecohealth 8: 177189. [Google Scholar]
  67. Adite A, Winemiller KO, , 1997. Trophic ecology and ecomorphology of fish assemblages in coastal lakes of Benin, West Africa. Ecoscience 4: 623. [Google Scholar]
  68. Johnels AG, Svensson GSO, , 1954. On the biology of Protopterus annectens (Owen). Ark Zool 7: 131164. [Google Scholar]
  69. Daffalla AA, Elias EE, Amin MA, , 1985. The lungfish Protopterus annectans (Owen) as a biocontrol agent against schistosome vector snails. J Trop Med Hyg 88: 131134. [Google Scholar]
  70. Babiker MM, , 1979. Respiratory behavior, oxygen consumption and relative dependence on aerial respiration in the African lungfish (Protopterus annectens, Owen) and an air breathing teleost (Clarias lazera, C.). Hydrobiologia 65: 177187. [Google Scholar]
  71. Ayotunde EO, Ochang SN, Okey IB, , 2007. Parasitological examinations and food composition in the gut of feral African carp, Labeo coubie in the Cross River, southeastern, Nigeria. Afr J Biotechnol 6: 625630. [Google Scholar]
  72. GU Ikpi, Jenyo-Oni A, Offem BO, , 2012. Catch rate, distribution, trophic and reproductive biology of the African carp Labeo coubie in the Agbokim Waterfalls, Nigeria. Fish Aquacult J 38: 113. [Google Scholar]
  73. Olufeagba SO, Okomoda VT, Benny, 2016. Some aspects of the biology of Labeo coubie Ruppell, 1832 and Labeo senegalensis valenciennes, 1842 from lower river Benue. J Fish Sci 10: 4954. [Google Scholar]
  74. Olaleye VF, , 2005. Ichthyofaunal survey of rivers within Ewekoro cement manufacturing operational areas. Biodivers Conserv 14: 21712184. [Google Scholar]
  75. Ayoade AA, Ikulala AO, , 2007. Length weight relationship, condition factor and stomach contents of Hemichromis bimaculatus, Sarotherodon melanotheron and Chromidotilapia guentheri (Perciformes: Cichlidae) in Eleiyele Lake, southwestern Nigeria. Rev Biol Trop 55: 969977. [Google Scholar]
  76. Lalèyè P, Chikou A, Gnohossou P, Vandewalle P, Philippart JC, Teugels G, , 2006. Studies on the biology of the two species of catfish Synodontis schall and Synodontis nigrita (Ostariophysi: Mochokidae) from the Ouémé river, Bénin. Belg J Zool 136: 193201. [Google Scholar]
  77. Bishai HM, Abu Gideiri YB, , 1965. Studies on the biology of the genus Synodontis at Khartoum. II. Food and feeding habits. Hydrobiologia 26: 98113. [Google Scholar]
  78. Ajiboye AO, Faturoti EO, Owolabi OD, , 2013. Food and feeding habits of Synodontis nigrita, valenciennes, 1840 (Pisces: Mochokidae) in Asejire lake, Nigeria. Int J Lakes Rivers 6: 18. [Google Scholar]
  79. Willoughby NG, , 1976. The buoyancy and orientation of the upside-down catfishes of the genus Synodontis (Pisces: Siluroidei). J Zool 180: 291314. [Google Scholar]
  80. Ofori-Danson PK, , 1992. Ecology of some species of catfish Synodontis (Pisces: Mochocidae) in the Kpong headpond in Ghana. Environ Biol Fishes 35: 4961. [Google Scholar]
  81. Albaret JJ, , 1994. Peuplements de Poisons, Ressources Halieutiques, Pisciculture Dans le Delta du Fleuve Senegal: Impact des Modifications de l’Environnement. Dakar, Senegal: ORSTOM/CRODT. [Google Scholar]
  82. Sarr A, Kinzelbach R, Diouf M, Njie E, , 2013. A contribution to the study of the ichthyofauna of the Ferlo lower valley in Senegal. J Environ Sci Water Res 2: 403409. [Google Scholar]
  83. Crutchfield JU, Jr. Schiller DH, Herlong DD, Mallin MA, , 1992. Establishment and impact of redbelly tilapia in a vegetated cooling reservoir. J Aquat Plant Manag 30: 2835. [Google Scholar]
  84. Van Schayck ICP, , 1985. Laboratory studies on the relation between aquatic vegetation and the presence of two bilharzia-bearing snail species. J Aquat Plant Manag 23: 8791. [Google Scholar]
  85. Schwartz DP, Gebhart GE, Maughan OE, , 1986. Effectiveness of blue tilapia as a weed control agent in ponds. Prog Fish-Cult 48: 259263. [Google Scholar]
  86. Oso JA, Ayodele LA, Fagbuaro O, , 2006. Food and feeding habits of Oreochromis niloticus (L.) and Sarotherodon galilaeus (L.) in a tropical reservoir. World J Zool 1: 118121. [Google Scholar]
  87. DeGeorges A, Reilly BK, , 2006. Dams and large scale irrigation on the Senegal River: impacts on man and the environment. Int J Environ Stud 63: 633644. [Google Scholar]
  88. Dumas D, Mietton M, Hamerlynck O, Pesneaud F, Kane A, Coly A, Duvail S, Baba MLO, , 2010. Large dams and uncertainties: the case of the Senegal river (West Africa). Soc Nat Resour 23: 11081122. [Google Scholar]
  89. Duvail S, Hamerlynck O, , 2003. Mitigation of negative ecological and socio-economic impacts of the Diama Dam on the Senegal River delta wetland (Mauritania), using a model based decision support system. Hydrol Earth Syst Sci 7: 133146. [Google Scholar]
  90. Sokolow SH, 2017. Nearly 400 million people are at higher risk of schistosomiasis because dams block the migration of snail-eating river prawns. Phil Trans R Soc B 372: 20160127. [Google Scholar]
  91. Alkalay AS, Rosen O, Sokolow SH, Faye YPW, Faye DS, Aflalo ED, Jouanard N, Zilberg D, Huttinger E, Sagi A, , 2014. The prawn Macrobrachium vollenhovenii in the Senegal River basin: towards sustainable restocking of all-male populations for biological control of schistosomiasis. PLoS Negl Trop Dis 8: e3060. [Google Scholar]
  92. FAO-UN, 2008. Fishery and Aquaculture Country Profiles. Country Profile Fact Sheets. Food and Agriculture Organization of the United Nations 2008–2017. Available at: http://www.fao.org/fishery/facp/SEN/en. Accessed December 2017.
  93. Slootweg R, Malek EA, McCullough FS, , 1994. The biological control of snail intermediate hosts of schistosomiasis by fish. Rev Fish Biol Fish 4: 6790. [Google Scholar]
  94. Frei M, Khan MAM, Razzak MA, Hossain MM, Dewan S, Becker K, , 2007. Effects of a mixed culture of common carp, Cyprinus carpio L., and Nile tilapia, Orechromis niloticus (L.), on terrestrial arthropod population, benthic fauna, and weed biomass in rice fields in Bangladesh. Biol Control 41: 207213. [Google Scholar]
  95. Nilsson NA, Northcote TG, , 1981. Rainbow trout (Salmo gairdneri) and cutthroat trout (S. clarki) interactions in coastal British Columbia lakes. Can J Fish Aquat Sci 38: 12281246. [Google Scholar]
  96. Stauffer JR, Jr. Madsen H, Konings A, Bloch P, Ferreri CP, Likongwe J, McKaye KR, Black KE, , 2007. Taxonomy: a precursor to understanding ecological interactions among schistosomes, snail hosts, and snail-eating fishes. Trans Am Fish Soc 136: 11361145. [Google Scholar]
  97. Panicker KN, Jayasree M, Krishnamoorthy K, , 1992. A cost benefit analysis of fish culture strategy towards the control of mansonioides in Shertallai, Kerala state. Indian J Med Res 95: 157160. [Google Scholar]
  98. Ikomi RB, Odum O, , 1998. Studies on aspects of the ecology of the catfish Chrysichthys auratus Geoffrey St. Hilaire (Osteichthyes; Bagridae) in the river Benin (Niger Delta, Nigeria). Fish Res 35: 209218. [Google Scholar]
  99. Gbaguidi HMAG, Adite A, Abou Y, , 2016. Trophic ecology and establishment of the silver catfish, Chrysichthys nigrodigitatus (Pisces: Siluriformes: Claroteidae) introduced in an artificial pond of Benin, West Africa. J Fish Aquat Sci 12: 4253. [Google Scholar]
  100. Iyabo UB, , 2014. Diet composition, feeding habits and condition factor of Chrysichthys nigrodigitatus in Ebonyi river (a tropical flood river system), southeastern Nigeria. C J Agric Sci 8: 2937. [Google Scholar]
  101. Oboh IP, Edema CU, Tongo OL, , 2003. The food and feeding habits of fishes of the Jamieson River, Nigeria. Pak J Sci Ind Res 46: 255260. [Google Scholar]
  102. Arawomo GAO, , 1976. Food and feeding of three Citharinus species in Lake Kainji, Nigeria. J Fish Biol 9: 310. [Google Scholar]
  103. Hyslop EJ, , 1987a. The growth and feeding habits of Clarias anguillaris during their first season in the floodplain pools of the Sokoto-Rima River basin, Nigeria. J Fish Biol 30: 183192. [Google Scholar]
  104. Winemiller KO, Kelso-Winemiller LC, , 1996. Comparative ecology of catfishes of the upper Zambezi. J Fish Biol 49: 10431061. [Google Scholar]
  105. Dadebo E, , 2000. Reproductive biology and feeding habits of the catfish Clarias gariepinus (Burchell) (Pisces: Clariidae) in Lake Awassa, Ethiopia. Ethiop J Sci 23: 231246. [Google Scholar]
  106. Bruton MN, , 1979. The food and feeding behaviour of Clarias gariepinus (Pisces: Clariidae) in Lake Sibaya, South Africa, with emphasis on its role as a predator of cichlids. Trans Zool Soc London 35: 47114. [Google Scholar]
  107. Hyslop EJ, , 1987b. Aspects of the biology of Hemichromis bimaculatus from a small stream in Nigeria. J Fish Biol 31: 745751. [Google Scholar]
  108. Atindana SA, Bulley R, Alhassan EH, Abarike ED, A-Yeboah A Akongyuure DN, Abobi SM, , 2014. Stomach Content Analyses of Tilapia zillii and Hemichromis fasciatus in the Golinga Reservoir in the Tolon District of the Northern Region of Ghana. Proceedings of the 32nd biennial conference of the Ghana Animal Science Association, August 2014, Tamale, Ghana, 2328. [Google Scholar]
  109. Raji A, Saidu AK, Maryam AT, , 2003. Preliminary Studies on Food and Feeding Habits of Polypterus endlichneri and Polypterus senegalus in Lake Chad. 18th Annual Conference of the Fisheries Society of Nigeria, December 2003, Owerri, Nigeria, 186193. [Google Scholar]

Data & Media loading...

Supplemental figure and appendix tables

  • Received : 02 Jun 2018
  • Accepted : 26 Sep 2018
  • Published online : 21 Nov 2018

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error