Volume 99, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Drug-resistant is a major threat to global malaria control and elimination efforts. In Botswana, a southern African country approaching malaria elimination, molecular data are not available. Parasites were assessed through pollymerase chain reaction (PCR) for confirmation of positive rapid diagnostic tests, multiplicity of infection (MOI), and drug resistance markers among isolates from clinical uncomplicated malaria cases collected at health facilities. Of 211 dried blood spot samples selected for the study, 186 (88.2%) were PCR positive for . The mean MOI based on genotyping was 2.3 and was not associated with age. A high prevalence of wild-type parasites for and was found, with a haplotype frequency (K76/N86) of 88.8% and 17.7% of the isolates having two copies of the gene. For , all the parasites carried the wild-type S769 allele. Sequencing showed no evidence of non-synonymous mutations associated with reduced artemisinin derivative sensitivity in the gene. In conclusion, we found that parasites in Botswana were mostly wild type for the drug resistance markers evaluated. Yet, there was a high rate of a molecular marker associated to reduced sensitivity to lumefantrine. Our results indicate the need for systematic drug efficacy surveillance to complement malaria elimination efforts.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Botswana Ministry of Health, Department of Public Health, National Malaria Programme, 2015. Revised Guidelines for the Diagnosis and Treatment of Malaria in Botswana. Gaborone, Botswana: Botswana Ministry of Health. [Google Scholar]
  2. Howes RE, 2015. Plasmodium vivax transmission in Africa. PLoS Negl Trop Dis 9: e0004222. [Google Scholar]
  3. Motshoge T, 2016. Molecular evidence of high rates of asymptomatic P. vivax infection and very low P. falciparum malaria in Botswana. BMC Infect Dis 16: 520. [Google Scholar]
  4. Wongsrichanalai C, Pickard AL, Wernsdorfer WH, Meshnick SR, , 2002. Epidemiology of drug-resistant malaria. Lancet Infect Dis 2: 209218. [Google Scholar]
  5. Miotto O, 2015. Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nat Genet 47: 226234. [Google Scholar]
  6. Wurtz N, 2014. Role of Pfmdr1 in in vitro Plasmodium falciparum susceptibility to chloroquine, quinine, monodesethylamodiaquine, mefloquine, lumefantrine, and dihydroartemisinin. Antimicrob Agents Chemother 58: 70327040. [Google Scholar]
  7. David-Bosne S, Clausen MV, Poulsen H, Møller JV, Nissen P, le Maire M, , 2016. Reappraising the effects of artemisinin on the ATPase activity of PfATP6 and SERCA1a E255L expressed in Xenopus laevis oocytes. Nat Struct Mol Biol 23: 12. [Google Scholar]
  8. Tanabe K, Mackay M, Goman M, Scaife JG, , 1987. Allelic dimorphism in a surface antigen gene of the malaria parasite Plasmodium falciparum. J Mol Biol 195: 273287. [Google Scholar]
  9. Fidock DA, 2000. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol Cell 6: 861871. [Google Scholar]
  10. Djimdé A, 2001. A molecular marker for chloroquine-resistant falciparum malaria. N Engl J Med 344: 257263. [Google Scholar]
  11. Duah NO, Wilson MD, Ghansah A, Abuaku B, Edoh D, Quashie NB, Koram KA, , 2007. Mutations in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance genes, and treatment outcomes in Ghanaian children with uncomplicated malaria. J Trop Pediatr 53: 2731. [Google Scholar]
  12. Dahlström S, 2014. Plasmodium falciparum polymorphisms associated with ex vivo drug susceptibility and clinical effectiveness of artemisinin-based combination therapies in Benin. Antimicrob Agents Chemother 58: 110. [Google Scholar]
  13. Price RN, 2004. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet 364: 438447. [Google Scholar]
  14. Ferreira ID, Martinelli A, Rodrigues LA, do Carmo EL, do Rosário VE, Póvoa MM, Cravo P, , 2008. Plasmodium falciparum from Pará state (Brazil) shows satisfactory in vitro response to artemisinin derivatives and absence of the S769N mutation in the SERCA-type PfATPase6. Trop Med Int Health 13: 199207. [Google Scholar]
  15. Menegon M, Sannella AR, Majori G, Severini C, , 2008. Detection of novel point mutations in the Plasmodium falciparum ATPase6 candidate gene for resistance to artemisinins. Parasitol Int 57: 233235. [Google Scholar]
  16. Taylor SM, 2015. Absence of putative artemisinin resistance mutations among Plasmodium falciparum in Sub-Saharan Africa: a molecular epidemiologic study. J Infect Dis 211: 680688. [Google Scholar]
  17. Mita T, Tanabe K, , 2012. Evolution of Plasmodium falciparum drug resistance: implications for the development and containment of artemisinin resistance. Jpn J Infect Dis 65: 465475. [Google Scholar]
  18. Bustos MD, Wongsrichanalai C, Delacollette C, Burkholder B, , 2013. Monitoring antimalarial drug efficacy in the Greater Mekong Subregion: an overview of in vivo results from 2008 to 2010. Southeast Asian J Trop Med Public Health 44: 201230. [Google Scholar]
  19. Djimde AA, 2003. Clearance of drug-resistant parasites as a model for protective immunity in Plasmodium falciparum malaria. Am J Trop Med Hyg 69: 558563. [Google Scholar]
  20. González R, Ataíde R, Naniche D, Menéndez C, Mayor A, , 2012. HIV and malaria interactions: where do we stand? Expert Rev Anti Infect Ther 10: 153165. [Google Scholar]
  21. Kublin JG, Cortese JF, Njunju EM, Mukadam RA, Wirima JJ, Kazembe PN, Djimdé AA, Kouriba B, Taylor TE, Plowe CV, , 2003. Reemergence of chloroquine-sensitive Plasmodium falciparum malaria after cessation of chloroquine use in Malawi. J Infect Dis 187: 18701875. [Google Scholar]
  22. Huang B, 2016. Prevalence of crt and mdr-1 mutations in Plasmodium falciparum isolates from Grande Comore island after withdrawal of chloroquine. Malar J 15: 414. [Google Scholar]
  23. Conrad MD, 2014. Comparative impacts over 5 years of artemisinin-based combination therapies on Plasmodium falciparum polymorphisms that modulate drug sensitivity in Ugandan children. J Infect Dis 210: 344353. [Google Scholar]
  24. Tumwebaze P, 2015. Impact of antimalarial treatment and chemoprevention on the drug sensitivity of malaria parasites isolated from Ugandan children. Antimicrob Agents Chemother 59: 30183030. [Google Scholar]
  25. Sidhu AB, Uhlemann AC, Valderramos SG, Valderramos JC, Krishna S, Fidock DA, , 2006. Decreasing pfmdr1 copy number in Plasmodium falciparum malaria heightens susceptibility to mefloquine, lumefantrine, halofantrine, quinine, and artemisinin. J Infect Dis 194: 528535. [Google Scholar]
  26. Uhlemann AC, Ramharter M, Lell B, Kremsner PG, Krishna S, , 2005. Amplification of Plasmodium falciparum multidrug resistance gene 1 in isolates from Gabon. J Infect Dis 192: 18301835. [Google Scholar]
  27. Witkowski B, Nicolau ML, Soh PN, Iriart X, Menard S, Alvarez M, Marchou B, Magnaval JF, Benoit-Vical F, Berry A, , 2010. Plasmodium falciparum isolates with increased pfmdr1 copy number circulate in west Africa. Antimicrob Agents Chemother 54: 30493051. [Google Scholar]
  28. Agyeman-Budu A, Brown C, Adjei G, Adams M, Dosoo D, Dery D, Wilson M, Asante KP, Greenwood B, Owusu-Agyei S, , 2013. Trends in multiplicity of Plasmodium falciparum infections among asymptomatic residents in the middle belt of Ghana. Malar J 12: 22. [Google Scholar]
  29. Congpuong K, Sukaram R, Prompan Y, Dornae A, , 2014. Genetic diversity of the msp-1, msp-2, and glurp genes of Plasmodium falciparum isolates along the Thai-Myanmar borders. Asian Pac J Trop Biomed 4: 598602. [Google Scholar]
  30. Simon C, Moakofhi K, Mosweunyane T, Jibril HB, Nkomo B, Motlaleng M, Ntebela DS, Chanda E, Haque U, , 2013. Malaria control in Botswana, 2008–2012: the path towards elimination. Malar J 12: 458. [Google Scholar]
  31. Chihanga S, Haque U, Chanda E, Mosweunyane T, Moakofhi K, Jibril HB, Motlaleng M, Zhang W, Glass GE, , 2016. Malaria elimination in Botswana, 2012–2014: achievements and challenges. Parasit Vectors 9: 99. [Google Scholar]
  32. Karl S, White MT, Milne GJ, Gurarie D, Hay SI, Barry AE, Felger I, Mueller I, , 2016. Spatial effects on the multiplicity of Plasmodium falciparum infections. PLoS One 11: e0164054. [Google Scholar]
  33. Ntoumi F, Contamin H, Rogier C, Bonnefoy S, Trape JF, Mercereau-Puijalon O, , 1995 . Age-dependent carriage of multiple Plasmodium falciparum merozoite surface antigen-2 alleles in asymptomatic malaria infections. Am J Trop Med Hyg 52: 8188. [Google Scholar]
  34. Vafa M, Troye-Blomberg M, Anchang J, Garcia A, Migot-Nabias F, , 2008. Multiplicity of Plasmodium falciparum infection in asymptomatic children in Senegal: relation to transmission, age and erythrocyte variants. Malar J 7: 17. [Google Scholar]

Data & Media loading...

  • Received : 24 May 2018
  • Accepted : 31 Aug 2018
  • Published online : 22 Oct 2018

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error