Volume 101, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



The etiology of infections of the central nervous system (CNS) in Nepal often remains unrecognized because of underdeveloped laboratory facilities. The aim of this study was to investigate the etiology of CNS infections in a rural area of Nepal using molecular methods. From November 2014 to February 2016, cerebrospinal fluid (CSF) was collected from 176 consecutive patients presenting at United Mission Hospital in Tansen, Nepal, with symptoms of possible CNS infection. After the CSF samples were stored and transported frozen, polymerase chain reaction (PCR) was performed in Sweden, targeting a total of 26 pathogens using the FilmArray ME panel (BioFire, bioMerieux, Salt Lake City, UT), the MeningoFinder 2SMART (PathoFinder, Maastricht, The Netherlands), and an in-house PCR test for dengue virus (DENV), Japanese encephalitis virus (JEV), and Nipah virus (NiV). The etiology could be determined in 23%. The bacteria detected were ( = 5), ( = 4), and ( = 1). The most common virus was enterovirus detected in eight samples, all during the monsoon season. Other viruses detected were cytomegalovirus ( = 6), varicella zoster virus ( = 5), Epstein–Barr virus ( = 3), herpes simplex virus (HSV) type 1 (HSV-1) ( = 3), HSV-2 ( = 3), human herpes virus (HHV) type 6 (HHV-6) ( = 3), and HHV-7 ( = 2). / was found in four samples. None of the samples were positive for DENV, JEV, or NiV. Of the patients, 67% had been exposed to antibiotics before lumbar puncture. In conclusion, the etiology could not be found in 77% of the samples, indicating that the commercial PCR panels used are not suitable in this setting. Future studies on the etiology of CNS infections in Nepal could include metagenomic techniques.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Bookstaver PB, Mohorn PL, Shah A, Tesh LD, Quidley AM, Kothari R, Bland CM, Weissman S, , 2017. Management of viral central nervous system infections: a primer for clinicians. J Cent Nerv Syst Dis 9: 1179573517703342. [Google Scholar]
  2. Costerus JM, Brouwer MC, Bijlsma MW, van de Beek D, , 2017. Community-acquired bacterial meningitis. Curr Opin Infect Dis 30: 135141. [Google Scholar]
  3. Kupila L, Vuorinen T, Vainionpaa R, Hukkanen V, Marttila RJ, Kotilainen P, , 2006. Etiology of aseptic meningitis and encephalitis in an adult population. Neurology 66: 7580. [Google Scholar]
  4. Polage CR, Cohen SH, , 2016. State-of-the-art microbiologic testing for community-acquired meningitis and encephalitis. J Clin Microbiol 54: 11971202. [Google Scholar]
  5. van Ettekoven CN, van de Beek D, Brouwer MC, , 2017. Update on community-acquired bacterial meningitis: guidance and challenges. Clin Microbiol Infect 23: 601606. [Google Scholar]
  6. Shrestha RG, Tandukar S, Ansari S, Subedi A, Shrestha A, Poudel R, Adhikari N, Basnyat SR, Sherchand JB, , 2015. Bacterial meningitis in children under 15 years of age in Nepal. BMC Pediatr 15: 94. [Google Scholar]
  7. Singh RR, Chaudhary SK, Bhatta NK, Khanal B, Shah D, , 2009. Clinical and etiological profile of acute febrile encephalopathy in eastern Nepal. Indian J Pediatr 76: 11091111. [Google Scholar]
  8. Giri A, 2013. Aetiologies of central nervous system infections in adults in Kathmandu, Nepal: a prospective hospital-based study. Sci Rep 3: 2382. [Google Scholar]
  9. Kelly DF, 2011. The burden of vaccine-preventable invasive bacterial infections and pneumonia in children admitted to hospital in urban Nepal. Int J Infect Dis 15: e17e23. [Google Scholar]
  10. Bronska E, Kalmusova J, Dzupova O, Maresova V, Kriz P, Benes J, , 2006. Dynamics of PCR-based diagnosis in patients with invasive meningococcal disease. Clin Microbiol Infect 12: 137141. [Google Scholar]
  11. Rogers BB, Shankar P, Jerris RC, Kotzbauer D, Anderson EJ, Watson JR, O’Brien LA, Uwindatwa F, McNamara K, Bost JE, , 2015. Impact of a rapid respiratory panel test on patient outcomes. Arch Pathol Lab Med 139: 636641. [Google Scholar]
  12. Scarborough M, Thwaites GE, , 2008. The diagnosis and management of acute bacterial meningitis in resource-poor settings. Lancet Neurol 7: 637648. [Google Scholar]
  13. Rhein J, 2016. Diagnostic performance of a multiplex PCR assay for meningitis in an HIV-infected population in Uganda. Diagn Microbiol Infect Dis 84: 268273. [Google Scholar]
  14. Bårnes GK, Gudina EK, Berhane M, Abdissa A, Tesfaw G, Abebe G, Feruglio SL, Caugant DA, Jørgensen HJ, , 2108. New molecular tools for meningitis diagnostics in Ethiopia–a necessary step towards improving antimicrobial prescription. BMC Infect Dis 18: 684. [Google Scholar]
  15. Tarai B, Das P, , 2019. FilmArray® meningitis/encephalitis (ME) panel, a rapid molecular platform for diagnosis of CNS infections in a tertiary care hospital in North India: one-and-half-year review. Neurol Sci 40: 8188. [Google Scholar]
  16. Services DoH, 2016. Annual Report 2071/72 (2014/2015). Available at: http://dohs.gov.np/wp-content/uploads/2016/06/Annual_Report_FY_2071_72.pdf. Accessed March 26, 2019. [Google Scholar]
  17. Kumar Pant D, Tenzin T, Chand R, Kumar Sharma B, Raj Bist P, , 2017. Spatio-temporal epidemiology of Japanese encephalitis in Nepal, 2007–2015. PLoS One 12: e0180591. [Google Scholar]
  18. Upreti SR, Lindsey NP, Bohara R, Choudhary GR, Shakya S, Gautam M, Giri JN, Fischer M, Hills SL, , 2017. Updated estimation of the impact of a Japanese encephalitis immunization program with live, attenuated SA 14-14-2 vaccine in Nepal. PLoS Negl Trop Dis 11: e0005866. [Google Scholar]
  19. Leber AL, 2016. Multicenter evaluation of BioFire FilmArray meningitis/encephalitis panel for detection of bacteria, viruses, and yeast in cerebrospinal fluid specimens. J Clin Microbiol 54: 22512261. [Google Scholar]
  20. Nestor D, Thulin Hedberg S, Lignell M, Skovbjerg S, Mölling P, Sundqvist M, , 2019. Evaluation of the FilmArray™ meningitis/encephalitis panel with focus on bacteria and Cryptococcus spp. J Microbiol Methods 157: 113116. [Google Scholar]
  21. Klenner J, Kohl C, Dabrowski PW, Nitsche A, , 2017. Comparing viral metagenomic extraction methods. Curr Issues Mol Biol 24: 5970. [Google Scholar]
  22. Alm E, Lesko B, Lindegren G, Ahlm C, Söderholm S, Falk KI, Lagerqvist N, , 2014. Universal single-probe RT-PCR assay for diagnosis of dengue virus infections. PLoS Negl Trop Dis 8: e3416. [Google Scholar]
  23. Hedberg ST, Olcen P, Fredlund H, Molling P, , 2009. Real-time PCR detection of five prevalent bacteria causing acute meningitis. APMIS 117: 856860. [Google Scholar]
  24. Brouwer MC, Tunkel AR, van de Beek D, , 2010. Epidemiology, diagnosis, and antimicrobial treatment of acute bacterial meningitis. Clin Microbiol Rev 23: 467492. [Google Scholar]
  25. Harvala H, 2018. Recommendations for enterovirus diagnostics and characterisation within and beyond Europe. J Clin Virol 101: 1117. [Google Scholar]
  26. Mohammadpour Touserkani F, Gainza-Lein M, Jafarpour S, Brinegar K, Kapur K, Loddenkemper T, , 2017. HHV-6 and seizure: a systematic review and meta-analysis. J Med Virol 89: 161169. [Google Scholar]
  27. Ang BSP, Lim TCC, Wang L, , 2018. Nipah virus infection. J Clin Microbiol 56: e01875-17. [Google Scholar]
  28. Joshi R, Kalantri SP, Reingold A, Colford JM, Jr., 2012. Changing landscape of acute encephalitis syndrome in India: a systematic review. Natl Med J India 25: 212220. [Google Scholar]
  29. Jain P, Prakash S, Khan DN, Garg RK, Kumar R, Bhagat A, Ramakrishna V, Jain A, , 2017. Aetiology of acute encephalitis syndrome in Uttar Pradesh, India from 2014 to 2016. J Vector Borne Dis 54: 311316. [Google Scholar]
  30. Murdoch DR, Woods CW, Zimmerman MD, Dull PM, Belbase RH, Keenan AJ, Scott RM, Basnyat B, Archibald LK, Reller LB, , 2004. The etiology of febrile illness in adults presenting to Patan hospital in Kathmandu, Nepal. Am J Trop Med Hyg 70: 670675. [Google Scholar]
  31. Andrews JR, 2018. High rates of enteric fever diagnosis and lower burden of culture-confirmed disease in peri-urban and rural Nepal. J Infect Dis 218: S214S221. [Google Scholar]
  32. Dhimal M, Ahrens B, Kuch U, , 2015. Climate change and spatiotemporal distributions of vector-borne diseases in Nepal–a systematic synthesis of literature. PLoS One 10: e0129869. [Google Scholar]
  33. Cousins S, , 2018. Managing MDR tuberculosis in Nepal. Lancet 391: 17601761. [Google Scholar]
  34. Gupta BP, Haselbeck A, Kim JH, Marks F, Saluja T, , 2018. The dengue virus in Nepal: gaps in diagnosis and surveillance. Ann Clin Microbiol Antimicrob 17: 32. [Google Scholar]
  35. Forbes JD, Knox NC, Peterson CL, Reimer AR, , 2018. Highlighting clinical metagenomics for enhanced diagnostic decision-making: a step towards wider implementation. Comput Struct Biotechnol J 16: 108120. [Google Scholar]
  36. Brown JR, Bharucha T, Breuer J, , 2018. Encephalitis diagnosis using metagenomics: application of next generation sequencing for undiagnosed cases. J Infect 76: 225240. [Google Scholar]
  37. Zanella MC, Lenggenhager L, Schrenzel J, Cordey S, Kaiser L, , 2019. High-throughput sequencing for the aetiologic identification of viral encephalitis, meningoencephalitis, and meningitis. A narrative review and clinical appraisal. Clin Microbiol Infect 18: 3081230817. [Google Scholar]
  38. Ventola CL, , 2015. The antibiotic resistance crisis: part 1: causes and threats. P T 40: 277283. [Google Scholar]

Data & Media loading...

Supplemental materials

  • Received : 23 May 2018
  • Accepted : 29 Mar 2019
  • Published online : 03 Jun 2019

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error