1921
Volume 99, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

is a protozoan parasite that causes amebiasis and poses a significant health risk for populations in endemic areas. The molecular mechanisms involved in the pathogenesis and regulation of the parasite are not well characterized. We aimed to identify and quantify the differentially abundant membrane proteins by comparing the membrane proteins of virulent and avirulent variants of HM-1:IMSS, and to investigate the potential associations among the differentially abundant membrane proteins. We performed quantitative proteomics analysis using isobaric tags for relative and absolute quantitation labeling, in combination with two mass spectrometry instruments, that is, nano-liquid chromatography (nanoLC)-matrix-assisted laser desorption/ionization-mass spectrometry/mass spectrometry and nanoLC-electrospray ionization tandem mass spectrometry. Overall, 37 membrane proteins were found to be differentially abundant, whereby 19 and 18 membrane proteins of the virulent variant of increased and decreased in abundance, respectively. Proteins that were differentially abundant include Rho family GTPase, calreticulin, a 70-kDa heat shock protein, and hypothetical proteins. Analysis by Protein ANalysis THrough Evolutionary Relationships database revealed that the differentially abundant membrane proteins were mainly involved in catalytic activities (29.7%) and metabolic processes (32.4%). Differentially abundant membrane proteins that were found to be involved mainly in the catalytic activities and the metabolic processes were highlighted together with their putative roles in relation to the virulence. Further investigations should be performed to elucidate the roles of these proteins in pathogenesis.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.18-0415
2018-10-08
2019-11-23
Loading full text...

Full text loading...

/deliver/fulltext/14761645/99/6/tpmd180415.html?itemId=/content/journals/10.4269/ajtmh.18-0415&mimeType=html&fmt=ahah

References

  1. Samie A, ElBakri A, AbuOdeh RE, Rodriguez-Morales AJ, , 2012. Amoebiasis in the tropics: epidemiology and pathogenesis. , ed. Current Topics in Tropical Medicine. London, United Kingdom: IntechOpen, 201226. [Google Scholar]
  2. Boettner DR, Huston C, Petri WA, , 2002. Galactose/N-acetylgalactosamine lectin: the coordinator of host cell killing. J Biosci 27: 553557. [Google Scholar]
  3. Mann BJ, , 2002. Structure and function of the Entamoeba histolytica Gal/GalNAc lectin. Int Rev Cytol 216: 5980. [Google Scholar]
  4. DeMeester F, Shaw E, Scholze H, Stolarsky T, Mirelman D, , 1990. Specific labeling of cysteine proteinases in pathogenic and non-pathogenic Entamoeba histolytica. Infect Immun 58: 13961401. [Google Scholar]
  5. Mortimer L, Chadee K, , 2010. The immunopathogenesis of Entamoeba histolytica . Exp Parasitol 126: 366380. [Google Scholar]
  6. Laughlin RC, Temesvari LA, , 2005. Cellular and molecular mechanisms that underlie Entamoeba histolytica pathogenesis: prospects for intervention. Expert Rev Mol Med 7: 119. [Google Scholar]
  7. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J, , 2000. Molecular Cell Biology, 4th edition. Bethesda, Maryland: National Center for Biotechnology Information, Bookshelf. [Google Scholar]
  8. Krogh A, Larsson B, Von Heijne G, Sonnhammer EL, , 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes1. J Mol Biol 305: 567580. [Google Scholar]
  9. Tsirigos K, , 2017. Bioinformatics methods for topology prediction of membrane proteins. Doctoral Dissertation, Department of Biochemistry and Biophysics, Stockholm University. Available at: http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1067468&dswid=-4009. Accessed May 11, 2018.
  10. Nozaki T, Nakada-Tsukui K, , 2006. Membrane trafficking as a virulence mechanism of the enteric protozoan parasite Entamoeba histolytica . Parasitol Res 98: 179183. [Google Scholar]
  11. Stuart LM, Ezekowitz RAB, , 2005. Phagocytosis: elegant complexity. Immunity 22: 539550. [Google Scholar]
  12. Loftus B, Anderson I, Davies R, Alsmark UCM, , 2005. The genome of the protist parasite Entamoeba histolytica . Nature 433: 865868. [Google Scholar]
  13. Perdomo D, Aït-Ammar N, Syan S, Sachse M, Jhingan GD, Guillén N, , 2015. Cellular and proteomics analysis of the endomembrane system from the unicellular Entamoeba histolytica . J Proteomics 112: 125140. [Google Scholar]
  14. Biller L, 2014. The cell surface proteome of Entamoeba histolytica . Mol Cell Proteomics 13: 132144. [Google Scholar]
  15. Diamond LS, Clark CG, Cunnick CC, , 1995. YI-S, a casein-free medium for axenic cultivation of Entamoeba histolytica, related Entamoeba, Giardia intestinalis and Trichomonas vaginalis . J Eukaryot Microbiol 42: 277278. [Google Scholar]
  16. Olivos A, Ramos E, Nequiz M, Barba C, Tello E, Castañón G, González A, Martínez RD, Montfort I, Pérez-Tamayo R, , 2005. Entamoeba histolytica: mechanism of decrease of virulence of axenic cultures maintained for prolonged periods. Exp Parasitol 110: 309312. [Google Scholar]
  17. Santos F, 2015. Maintenance of intracellular hypoxia and adequate heat shock response are essential requirements for pathogenicity and virulence of Entamoeba histolytica . Cell Microbiol 17: 10371051. [Google Scholar]
  18. Ujang JA, Kwan SH, Ismail MN, Lim BH, Noordin R, Othman N, , 2016. Proteome analysis of excretory-secretory proteins of Entamoeba histolytica HM1: IMSS via LC–ESI–MS/MS and LC–MALDI–TOF/TOF. Clin Proteomics 13: 33. [Google Scholar]
  19. Bodnar WM, Blackburn RK, Krise JM, Moseley MA, , 2003. Exploiting the complementary nature of LC/MALDI/MS/MS and LC/ESI/MS/MS for increased proteome coverage. J Am Soc Mass Spectrom 14: 971979. [Google Scholar]
  20. Davis PH, Zhang X, Guo J, Townsend RR, Stanley SL, , 2006. Comparative proteomic analysis of two Entamoeba histolytica strains with different virulence phenotypes identifies peroxiredoxin as an important component of amoebic virulence. Mol Microbiol 61: 15231532. [Google Scholar]
  21. Davis PH, Chen M, Zhang X, Clark CG, Townsend RR, Stanley SL, Jr., 2009. Proteomic comparison of Entamoeba histolytica and Entamoeba dispar and the role of E. histolytica alcohol dehydrogenase 3 in virulence. PLoS Negl Trop Dis 3: e415. [Google Scholar]
  22. Williams RB, Chan EK, Cowley MJ, Little PF, , 2007. The influence of genetic variation on gene expression. Genome Res 17: 17071716. [Google Scholar]
  23. Bosch DE, Siderovski DP, , 2013. G protein signaling in the parasite Entamoeba histolytica . Exp Mol Med 45: e15. [Google Scholar]
  24. Gilchrist CA, 2006. Impact of intestinal colonization and invasion on the Entamoeba histolytica transcriptome. Mol Biochem Parasitol 147: 163176. [Google Scholar]
  25. Thibeaux R, Weber C, Hon CC, Dillies MA, Avé P, Coppée JY, Labruyère E, Guillén N, , 2013. Identification of the virulence landscape essential for Entamoeba histolytica invasion of the human colon. PLoS Pathog 9: e1003824. [Google Scholar]
  26. Hoek JB, Rydström J, , 1988. Physiological roles of nicotinamide nucleotide transhydrogenase. Biochem J 254: 110. [Google Scholar]
  27. Okada M, Nozaki T, , 2006. New insights into molecular mechanisms of phagocytosis in Entamoeba histolytica by proteomic analysis. Arch Med Res 37: 244251. [Google Scholar]
  28. Descoteaux S, Ayala P, Orozco E, Samuelson J, , 1992. Primary sequences of two P-glycoprotein genes of Entamoeba histolytica . Mol Biochem Parasitol 54: 201211. [Google Scholar]
  29. Ouellette M, Légaré D, Papadopoulou B, , 2001. Multidrug resistance and ABC transporters in parasitic protozoa. J Mol Microbiol Biotechnol 3: 201206. [Google Scholar]
  30. Orozco E, Lopez C, Gomez C, Perez DG, Marchat L, Banuelos C, Delgadillo DM, , 2002. Multidrug resistance in the protozoan parasite Entamoeba histolytica . Parasitol Int 51: 353359. [Google Scholar]
  31. Bansal D, Sehgal R, Chawla Y, Malla N, Mahajan RC, , 2006. Multidrug resistance in amoebiasis patients. Indian J Med Res 124: 189194. [Google Scholar]
  32. Alekshun MN, Levy SB, , 2007. Molecular mechanisms of antibacterial multidrug resistance. Cell 128: 10371050. [Google Scholar]
  33. Li XZ, Nikaido H, , 2009. Efflux-mediated drug resistance in bacteria. Drugs 69: 15551623. [Google Scholar]
  34. Nikaido H, , 2009. Multidrug resistance in bacteria. Annu Rev Biochem 78: 119146. [Google Scholar]
  35. Michalak M, Corbett EF, Mesaeli N, Nakamura K, Opas M, , 1999. Calreticulin: one protein, one gene, many functions. Biochem J 344: 281292. [Google Scholar]
  36. González E, 2011. Entamoeba histolytica calreticulin: an endoplasmic reticulum protein expressed by trophozoites into experimentally induced amoebic liver abscesses. Parasitol Res 108: 439449. [Google Scholar]
  37. González E, Rico G, Mendoza G, Ramos F, García G, Morán P, Valadez A, Melendro EI, Ximénez C, , 2002. Calreticulin-like molecule in trophozoites of Entamoeba histolytica HM1: IMSS (Swissprot: accession P83003). Am J Trop Med Hyg 67: 636639. [Google Scholar]
  38. Ximénez C, 2014. Entamoeba histolytica and E. dispar calreticulin: inhibition of classical complement pathway and differences in the level of expression in amoebic liver abscess. Biomed Res Int 2014: 127453. [Google Scholar]
  39. Riekenberg S, Flockenhaus B, Vahrmann A, Müller MC, Leippe M, Kieß M, Scholze H, , 2004. The beta-N-acetylhexosaminidase of Entamoeba histolytica is composed of two homologous chains and has been localized to cytoplasmic granules. Mol Biochem Parasitol 138: 217225. [Google Scholar]
  40. Moncada D, Keller K, Chadee K, , 2005. Entamoeba histolytica-secreted products degrade colonic mucin oligosaccharides. Infect Immun 73: 37903793. [Google Scholar]
  41. Riahi Y, Ankri S, , 2000. Involvement of serine proteinases during encystation of Entamoeba invadens . Arch Med Res 31: S187S189. [Google Scholar]
  42. Makioka A, Kumagai M, Kobayashi S, Takeuchi T, , 2009. Involvement of serine proteases in the excystation and metacystic development of Entamoeba invadens . Parasitol Res 105: 977987. [Google Scholar]
  43. Markiewicz JM, Syan S, Hon CC, Weber C, Faust D, Guillen N, , 2011. A proteomic and cellular analysis of uropods in the pathogen Entamoeba histolytica . PLoS Negl Trop Dis 5: e1002. [Google Scholar]
  44. Wong H, Schotz MC, , 2002. The lipase gene family. J lipid Res 43: 993999. [Google Scholar]
  45. Tillack M, Biller L, Irmer H, Freitas M, Gomes MA, Tannich E, Bruchhaus I, , 2007. The Entamoeba histolytica genome: primary structure and expression of proteolytic enzymes. BMC genomics 8: 170. [Google Scholar]
  46. Touz MC, Nores MJ, Slavin I, Piacenza L, Acosta D, Carmona C, Luján HD, , 2002. Membrane-associated dipeptidyl peptidase IV is involved in encystation-specific gene expression during Giardia differentiation. Biochem J 364: 703710. [Google Scholar]
  47. Gething MJ, Sambrook J, , 1992. Protein folding in the cell. Nature 355: 3345. [Google Scholar]
  48. Tovy A, Hertz R, Siman-Tov R, Syan S, Faust D, Guillen N, Ankri S, , 2011. Glucose starvation boosts Entamoeba histolytica virulence. PLoS Negl Trop Dis 5: e1247. [Google Scholar]
  49. Gupta RS, Golding GB, , 1993. Evolution of HSP70 gene and its implications regarding relationships between archaebacteria, eubacteria, and eukaryotes. J Mol Evol 37: 573582. [Google Scholar]
  50. Lo H, Reeves RE, , 1978. Pyruvate-to-ethanol pathway in Entamoeba histolytica . Biochem J 171: 225230. [Google Scholar]
  51. Harding JJW, Pyeritz EA, Copeland ES, White HB, , 1975. Role of glycerol 3-phosphate dehydrogenase in glyceride metabolism. Effect of diet on enzyme activities in chicken liver. Biochem J 146: 223229. [Google Scholar]
  52. Furukawa A, Nakada-Tsukui K, Nozaki T, , 2013. Cysteine protease-binding protein family 6 mediates the trafficking of amylases to phagosomes in the enteric protozoan Entamoeba histolytica . Infect Immun 81: 18201829. [Google Scholar]
  53. Barbosa-Cabrera E, Salas-Casas A, Rojas-Hernandez S, Jarillo-Luna A, Abarca-Rojano E, Rodríguez MA, Campos-Rodríguez R, , 2012. Purification and cellular localization of the Entamoeba histolytica transcarboxylase. Parasitol Res 111: 14011405. [Google Scholar]
  54. Raz E, Schejter ED, Shilo BZ, , 1991. Interallelic complementation among DER/flb alleles: implications for the mechanism of signal transduction by receptor-tyrosine kinases. Genetics 129: 191201. [Google Scholar]
  55. Cheng XJ, 2001. Intermediate subunit of the Gal/GalNAc lectin of Entamoeba histolytica is a member of a gene family containing multiple CXXC sequence motifs. Infect Immun 69: 58925898. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.18-0415
Loading
/content/journals/10.4269/ajtmh.18-0415
Loading

Data & Media loading...

Supplemental figure

  • Received : 16 May 2018
  • Accepted : 22 Aug 2018
  • Published online : 08 Oct 2018

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error