1921
Volume 100, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Extended-spectrum β-lactamases (ESβLs) pose a serious problem in the treatment of urinary tract infections (UTIs). The ESβL-producing organism is an expanding global health problem. Therefore, screening for ESβL, detection of their drug-resistance pattern, and molecular characterization should be a continuous process. The present study was performed to determine the antibiotic resistance profile and the genetic characterization of ESβL isolates from hospital- and community-acquired UTIs. Two hundred fifty isolates were obtained from urine samples of outpatient clinic attendants and hospitalized patients at Kasr Al-Aini Hospital. By phenotypic screening tests, 100 ESβL isolates were detected among the studied groups. Furthermore, detection of beta-lactamase () cefotaxime (CTX)-M, sulfhydryl variable, and temoneira ESβL genes was investigated by polymerase chain reaction. A subset of 25 CTX-M–positive isolates was further identified by gene sequencing technology. Among the 100 ESβL isolates, 66% were and 34% were spp. There was no statistical difference in the prevalence of ESβL in community-acquired versus hospital-acquired UTIs. The susceptibility of all ESβL isolates to carbapenems was the most prevalent finding. In addition, all ESβL isolates were susceptible to fosfomycin, whereas all community-acquired ESβL isolates were susceptible to nitrofurantoin. A total of 98% of the ESβL isolates harbored -CTX-M genes, with CTX-M-15 being the most prevalent. It could be concluded that ESβL production is present at a high rate among Egyptian patients with hospital- and community-acquired UTI. The high prevalence of CTX-M may suggest it as a candidate for molecular screening of ESβL.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.18-0396
2018-12-26
2020-08-13
Loading full text...

Full text loading...

/deliver/fulltext/14761645/100/3/tpmd180396.html?itemId=/content/journals/10.4269/ajtmh.18-0396&mimeType=html&fmt=ahah

References

  1. Gupta K et al., 2011. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: a 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis 52: e103e120.
    [Google Scholar]
  2. Carlet J, Pittet D, 2013. Access to antibiotics: a safety and equity challenge for the next decade. Antimicrob Resist Infect Control 2: 1.
    [Google Scholar]
  3. Masud MR, Afroz H, Fakruddin M, 2014. Prevalence of extended-spectrum β-lactamase positive bacteria in radiologically positive urinary tract infection. Springerplus 3: 216.
    [Google Scholar]
  4. Biehl LM, Schmidt-Hieber M, Liss B, Cornely OA, 2014. Colonization and infection with extended-spectrum beta-lactamase producing-Enterobacteriaceae in high-risk patients-review of the literature from a clinical perspective. Crit Rev Microbiol 42: 116.
    [Google Scholar]
  5. Morosini MI, García-Castillo M, Coque TM, Valverde A, Novais A, Loza E, Baquero F, Cantón R, 2006. Antibiotic co-resistance in extended-spectrum-beta-lactamase-producing Enterobacteriaceae and invitro activity of tigecycline. Antimicrob Agents Chemother 50: 26952699.
    [Google Scholar]
  6. Manyahi J, Moyo SJ, Tellevik MG, Ndugulile F, Urassa W, Blomberg B, Langeland N, 2017. Detection of CTX-M-15 beta-lactamases in Enterobacteriaceae causing hospital-and community-acquired urinary tract infections as early as 2004, in Dar es Salaam, Tanzania. BMC Infect Dis 17: 282.
    [Google Scholar]
  7. Moghaddam MN, Beidokhti MH, Jamadar SA, Ghahraman M, 2014. Genetic properties of bla CTX-M and bla PER–beta-lactamase genes in clinical isolates of Enterobacteriaceae by polymerase chain reaction. Iran J Basic Med Sci 17: 378383.
    [Google Scholar]
  8. Nisha KV, Veena SA, Rathika SD, Vijaya SM, Avinash SK, 2017. Antimicrobial susceptibility, risk factors, and prevalence of bla cefotaximase, temoneira, and sulfhydryl variable genes among Escherichia coli in community-acquired pediatric urinary tract infection. J Lab Physicians 9: 156162.
    [Google Scholar]
  9. Djuikoue IC, Njajou O, Gonsu KH, Fokunang C, Bongo A, Bruno EO, Tanjung P, Linjouom A, Kakam C, Ngogang J, 2017. Prevalence of CTX-M beta-lactamases in Escherichia coli from community-acquired urinary tract infections and associated risk factors among women in Cameroon. J Epidemiol Res 3: 5156.
    [Google Scholar]
  10. De Oliveira CF, Salla A, Lara VM, Rieger A, Horta JA, Alves SH, 2010. Prevalence of extended-spectrum beta-lactamases-producing microorganisms in nosocomial patients and molecular characterization of the SHV-type isolates. Braz J Microbiol 41: 278282.
    [Google Scholar]
  11. Salah M, Azab M, Halaby H, Hanora A, 2016. Mutations in β-lactamases detected in multidrug-resistant gram-negative bacteria isolated from community-acquired urinary tract infections in Assiut, Egypt. Afr J Microbiol Res 10: 19381943.
    [Google Scholar]
  12. Ramadan DS, Bassyoni EA, Amer MM, Emam SM, 2016. Detection of ESBL producing bacteria in cases of urinary tract infection in pediatric department at Benha University Hospital. Egypt J Med Microbiol 25: 7784.
    [Google Scholar]
  13. Valverde A, Coque TM, Sanchez-Moreno MP, Rollán A, Baquero F, Cantón R, 2004. The dramatic increase in the prevalence of fecal carriage of extended-spectrum-beta-lactamase-producing-Enterobacteriaceae during non-outbreak situations in Spain. J Clin Microbiol 42: 47694775.
    [Google Scholar]
  14. Rodriguez-Bano J, Lopez-Cerero L, Navarro MD, Pascual A, 2008. Faecal carriage of extended-spectrum beta-lactamase-producing Escherichia coli: prevalence, risk factors and molecular epidemiology. J Antimicrob Chemother 62: 11421149.
    [Google Scholar]
  15. Sullivan R, Schaus D, John M, Delport JA, 2015. Extended spectrum beta-lactamases: a mini review of clinical relevant groups. J Med Microb Diagn 4: 203.
    [Google Scholar]
  16. Cheesbrough M, 2006. Examination of urine. District Laboratory Practice in Tropical Countries, Part 2, 2nd edition. Cambridge University Press, 105115.
    [Google Scholar]
  17. Clinical and Laboratory Standards Institute, 2014. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-Fourth Informational Supplement. Wayne, PA: CLSI M100-S24.
    [Google Scholar]
  18. Koneman EW, Allen SD, Janda WM, Schreckenberger PC, Winn WC, 1997. Color Atlas and Textbook of Diagnostic Microbiology, 5th edition. Philadelphia, PA: J.B. Lippincott Company Press, 110145.
    [Google Scholar]
  19. Heffernan H, Pope C, Carter P, 2007. Identification of Extended Spectrum Β-Lactamase Types, Plasmid-Mediated AmpC Β-Lactamases and Strains Among Urinary Escherichia coli and Klebsiella in New Zeland in 2006. Communicable Disease Group, Environmental Science and Research, FW07103.
    [Google Scholar]
  20. Paterson DL, Bonomo RA, 2005. Extended spectrum β-lactamases: a clinical update. Clin Microbiol Rev 18: 657686.
    [Google Scholar]
  21. Chan YH, 2003a. Biostatistics102: quantitative data–parametric & non-parametric tests. Singapore Med J 44: 391396.
    [Google Scholar]
  22. Chan YH, 2003b. Biostatistics 103: qualitative data–tests of independence. Singapore Med J 44: 498503.
    [Google Scholar]
  23. Osthoff M, McGuinness SL, Wagen AZ, Eisen DP, 2015. Urinary tract infections due to extended-spectrum beta-lactamase-producing Gram-negative bacteria: identification of risk factors and outcome predictors in an Australian tertiary referral hospital. Int J Infect Dis 34: 7983.
    [Google Scholar]
  24. Lee DS, Lee CB, Lee SJ, 2010. Prevalence and risk factors for extended spectrum beta-lactamase-producing uropathogens in patients with urinary tract infection. Korean J Urol 51: 492497.
    [Google Scholar]
  25. Labah EA, Afifi IK, Ahmed LM, 2009. Community-acquired urinary tract infections in Tanta, Egypt: aetiology and antibiotics resistance pattern. Egypt J Med Microbiol 18: 179190.
    [Google Scholar]
  26. Ibrahim MA, Agban MN, Thabit AG, El-Khamissy TR, Attia AE, 2014. Prevalence of extended-spectrum B-lactamase producing Klebsiella pneumoniae by phenotypic and genotypic methods in Assiut University Hospital. Egypt J Med Microbiol 23: 6170.
    [Google Scholar]
  27. El Bouamri MC, Arsalane L, Zerouali K, Kathy K, El Kamouni Y, Zouhair S, 2015. Molecular characterization of extended spectrum B-lactamase-producing Escherichia coli in a university hospital in Morocco, North Africa. Afr J Urol 21: 161166.
    [Google Scholar]
  28. Kandeel A, 2014. Prevalence and risk factors of extended-spectrum β-lactamases producing Enterobacteriaceae in a general hospital in Saudi Arabia. J Microbiol Infect Dis 4: 5054.
    [Google Scholar]
  29. Fadil AA, Hakeem MA, Abdelraheem AR, 2017. Esβl-producing E. coli and Klebsiella among patients treated at Minia University Hospitals. J Infect Dis Preve Med 5: 156163.
    [Google Scholar]
  30. Al-Agamy MH, Shibil AM, Hafez MM, Al-Ahdal MN, Memish ZA, Khubnani H, 2014. Molecular characteristics of extended-spectrum-beta-lactamase-producing Escherichia coli in Riyadh: the emergence of CTX-M-15-producing E. coli ST131. Ann Clin Microbiol Antimicrob 13: 48.
    [Google Scholar]
  31. Chandramohan L, Revell PA, 2012. Prevalence and molecular characterization of extended-spectrum—beta-lactamase—producing Enterobacteriaceae in a pediatric patient population. Antimicrob Agents Chemother 56: 47654770.
    [Google Scholar]
  32. Ho PL, Yip KS, Chow KH, Lo JYC, Que TL, Yuen KY, 2010. Antimicrobial resistance among uropathogens that cause acute uncomplicated cystitis in women in Hong Kong: a prospective multicenter study from 2006 to 2008. Diagn Microbiol Infect Dis 66: 8793.
    [Google Scholar]
  33. Antibiotic Expert Group, 2010. Therapeutic Guidelines: Antibiotic. Version 14. Melbourne, Australia: Therapeutic Guidelines Limited.
    [Google Scholar]
  34. Onnberg A, Mölling P, Zimmermann J, Söderquist B, 2011. Molecular and phenotypic characterization of Escherichia coli and Klebsiella pneumoniae producing extended-spectrum β-lactamases with focus on CTX-M in a low-endemic area in Sweden. APMIS 119: 287295.
    [Google Scholar]
  35. Rezai MS, Salehifar E, Rafiei A, Langaee T, Rafati M, Shafahi K, 2015. Characterization of multidrug-resistant extended-spectrum beta-lactamase-producing Escherichia coli among uropathogens of pediatrics in north of Iran. Biomed Res Int 2015: 309478.
    [Google Scholar]
  36. Bajpai T, Pandey M, Varma M, Bhatambare GS, 2017. Prevalence of TEM, SHV, and CTX-M Beta-Lactamase genes in the urinary isolates of a tertiary care hospital. Avicenna J Med 7: 1216.
    [Google Scholar]
  37. Moubareck C, Daoud Z, Hakime NI, Hamze M, Mangeney N, Matta H, Mokhbat JE, Rohban R, Sarkis DK, Populaire FD, 2005. Countrywide spread of community-and the hospital-acquired extended-spectrum beta-lactamase (CTX-M-15)-producing Enterobacteriaceae in Lebanon. J Clin Microbiol 43: 33093313.
    [Google Scholar]
  38. Livermore DM et al., 2007. CTX-M; changing the face of ESβLs in Europe. J Antimicrob Chemother 59: 165174.
    [Google Scholar]
  39. Rubio-Perez I, Martin-Perez E, Garcia DD, Calvo ML, Barrera EL, 2012. Extended-spectrum β lactamase producing bacteria in a tertiary care hospital in Madrid: epidemiology, risk factors, and antimicrobial susceptibility patterns. Emerg Health Threats J 5: 11589.
    [Google Scholar]
  40. Hernandez E, Araque M, Millan Y, Millan B, Vielmas S, 2014. Prevalence of beta-lactamase CTX-M-15 in phylogenetic groups of uropathogenic Escherichia coli isolated from patients in the community of Merida, Venezuela. Invest Clin 55: 3243.
    [Google Scholar]
  41. Rogers BA, Sidjabat HE, Paterson DL, 2011. Escherichia coli O25b-ST131: a pandemic, multi-resistant, community-associated strain. J Antimicrob Chemother 66: 114.
    [Google Scholar]
  42. Dutour C, Bonnet R, Marchandin H, Boyer M, Chanal C, Sirot D, Sirot J, 2002. CTX-M-1, CTX-M-3, and CTX-M-14β-lactamases from Enterobacteriaceae isolated in France. Antimicrob Agents Chemother 46: 534537.
    [Google Scholar]
  43. Mavroidi A, Tzelepi E, Miriagou V, Gianneli D, Legakis NJ, Tzouvelekis LS, 2002. CTX-M-3 β-lactamase—producing Escherichia coli from Greece. Microb Drug Resist 8: 3537.
    [Google Scholar]
  44. Yu WL, Winokur PL, Von Stein DL, Pfaller MA, Wang JH, Jones RN, 2002. The first description of Klebsiella pneumoniae harboring CTX-M β-lactamases (CTX-M-14 and CTX-M-3) in Taiwan. Antimicrob Agents Chemother 46: 10981100.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.18-0396
Loading
/content/journals/10.4269/ajtmh.18-0396
Loading

Data & Media loading...

  • Received : 09 May 2018
  • Accepted : 14 Nov 2018
  • Published online : 26 Dec 2018

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error