1921
Volume 99, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Although has been assumed to be absent from sub-Saharan Africa because of the protective mutation conferring the Duffy-negative phenotype, recent evidence has suggested that cases are prevalent in these regions. We selected 292 dried blood spots from children who participated in the 2013–2014 Demographic and Health Survey of the Democratic Republic of the Congo (DRC), to assess for infection. Four infections were identified by polymerase chain reaction, each in a geographically different survey cluster. Using these as index cases, we tested the remaining 73 samples from the four clusters. With this approach, 10 confirmed cases, three probable cases, and one possible case of were identified. Among the 14 cases, nine were coinfected with . All 14 individuals were confirmed to be Duffy-negative by sequencing for the single point mutation in the GATA motif that represses the expression of the Duffy antigen. This finding is consistent with a growing body of literature that suggests that can infect Duffy-negative individuals in Africa. Future molecular and sequencing work is needed to understand the relationship of these isolates with other samples from Asia and South America and discover variants linked to virulence and erythrocyte invasion.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.18-0277
2018-09-10
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/14761645/99/5/tpmd180277.html?itemId=/content/journals/10.4269/ajtmh.18-0277&mimeType=html&fmt=ahah

References

  1. Livingstone FB, , 1984. The Duffy blood groups, vivax malaria, and malaria selection in human populations: a review. Hum Biol 56: 413425. [Google Scholar]
  2. Miller LH, Mason SJ, Clyde DF, , 1976. The resistance factor to Plasmodium vivax in blacks: the Duffy-blood-group genotype, FyFy. N Engl J Med 295: 302304. [Google Scholar]
  3. Tournamille C, Colin Y, Cartron JP, Van Kim CL, , 1995. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy–negative individuals. Nat Genet 10: 224228. [Google Scholar]
  4. Hadley TJ, , 1986. Invasion of erythrocytes by malaria parasites: a cellular and molecular overview. Annu Rev Microbiol 40: 451477. [Google Scholar]
  5. Miller LH, Mason SJ, Dvorak JA, McGinniss MH, Rothman IK, , 1975. Erythrocyte receptors for (Plasmodium knowlesi) malaria: Duffy blood group determinants. Science 189: 561563. [Google Scholar]
  6. Ménard D, 2010. Plasmodium vivax clinical malaria is commonly observed in Duffy-negative Malagasy people. Proc Natl Acad Sci USA 107: 59675971. [Google Scholar]
  7. Howes RE, Battle KE, Mendis KN, Smith DL, Cibulskis RE, Baird JK, Hay SI, , 2016. Global epidemiology of Plasmodium vivax. Am J Trop Med Hyg 95: 1534. [Google Scholar]
  8. Battle KE, Gething PW, Elyazar IRF, Moyes CL, Sinka ME, Howes RE, Guerra CA, Price RN, Baird KJ, Hay SI, , 2012. The global public health significance of Plasmodium vivax. Adv Parasitol 80: 1111. [Google Scholar]
  9. Guerra CA, 2010. The international limits and population at risk of Plasmodium vivax transmission in 2009. PLoS Negl Trop Dis 4: e774. [Google Scholar]
  10. Liu W, 2014. African origin of the malaria parasite Plasmodium vivax. Nat Commun 5: 3346. [Google Scholar]
  11. Loy DE, Liu W, Li Y, Learn GH, Plenderleith LJ, Sundararaman SA, Sharp PM, Hahn BH, , 2016. Out of Africa: origins and evolution of the human malaria parasites Plasmodium falciparum and Plasmodium vivax. Int J Parasitol 47: 8797. [Google Scholar]
  12. Prugnolle F, 2013. Diversity, host switching and evolution of Plasmodium vivax infecting African great apes. Proc Natl Acad Sci USA 110: 81238128. [Google Scholar]
  13. Mendes C, Dias F, Figueiredo J, Mora VG, Cano J, de Sousa B, do Rosário VE, Benito A, Berzosa P, Arez AP, , 2011. Duffy negative antigen is no longer a barrier to Plasmodium vivax—molecular evidences from the African west coast (Angola and Equatorial Guinea). PLoS Negl Trop Dis 5: e1192. [Google Scholar]
  14. Poirier P, 2016. The hide and seek of Plasmodium vivax in west Africa: report from a large-scale study in Beninese asymptomatic subjects. Malar J 15: 570. [Google Scholar]
  15. Motshoge T, 2016. Molecular evidence of high rates of asymptomatic P. vivax infection and very low P. falciparum malaria in Botswana. BMC Infect Dis 16: 520. [Google Scholar]
  16. Ngassa Mbenda HG, Das A, , 2014. Molecular evidence of Plasmodium vivax mono and mixed malaria parasite infections in Duffy-negative native Cameroonians. PLoS One 9: e103262. [Google Scholar]
  17. Russo G, 2017. Molecular evidence of Plasmodium vivax infection in Duffy negative symptomatic individuals from Dschang, west Cameroon. Malar J 16: 74. [Google Scholar]
  18. Woldearegai TG, Kremsner PG, Kun JFJ, Mordmüller B, , 2013. Plasmodium vivax malaria in Duffy-negative individuals from Ethiopia. Trans R Soc Trop Med Hyg 107: 328331. [Google Scholar]
  19. Gunalan K, Lo E, Hostetler JB, Yewhalaw D, Mu J, Neafsey DE, Yan G, Miller LH, , 2016. Role of Plasmodium vivax Duffy-binding protein 1 in invasion of Duffy-null Africans. Proc Natl Acad Sci USA 113: 62716276. [Google Scholar]
  20. Ryan JR, 2006. Evidence for transmission of Plasmodium vivax among a Duffy antigen negative population in western Kenya. Am J Trop Med Hyg 75: 575581. [Google Scholar]
  21. Wurtz N, 2011. Vivax malaria in Mauritania includes infection of a Duffy-negative individual. Malar J 10: 336. [Google Scholar]
  22. Abdelraheem MH, Albsheer MMA, Mohamed HS, Amin M, Mahdi Abdel Hamid M, , 2016. Transmission of Plasmodium vivax in Duffy-negative individuals in central Sudan. Trans R Soc Trop Med Hyg 110: 258260. [Google Scholar]
  23. Zimmerman PA, , 2017. Plasmodium vivax infection in Duffy-negative people in Africa. Am J Trop Med Hyg 97: 636638. [Google Scholar]
  24. Meshnick S, Janko M, Doctor S, Anderson O, Thwai K, Levitz L, Emch M, Mwandagalirwa K, Tshefu A, Ntuku H, , 2015. Democratic Republic of the Congo Demographic Health Survey 2013–2014 Supplemental Malaria Report. Available at: http://dhsprogram.com/pubs/pdf/FR300/FR300.Mal.pdf. Accessed August 25, 2017.
  25. Doctor SM, 2016. Malaria surveillance in the Democratic Republic of the Congo: comparison of microscopy, PCR, and rapid diagnostic test. Diagn Microbiol Infect Dis 85: 1618. [Google Scholar]
  26. Plowe CV, Djimde A, Bouare M, Doumbo O, Wellems TE, , 1995. Pyrimethamine and proguanil resistance-conferring mutations in Plasmodium falciparum dihydrofolate reductase: polymerase chain reaction methods for surveillance in Africa. Am J Trop Med Hyg 52: 565568. [Google Scholar]
  27. Doctor SM, 2016. Malaria surveillance in the Democratic Republic of the Congo: comparison of microscopy, PCR, and rapid diagnostic test. Diagn Microbiol Infect Dis 85: 1618. [Google Scholar]
  28. Doctor SM, 2016. Low prevalence of Plasmodium malariae and Plasmodium ovale mono-infections among children in the Democratic Republic of the Congo: a population-based, cross-sectional study. Malar J 15: 350. [Google Scholar]
  29. Singh B, Bobogare A, Cox-Singh J, Snounou G, , 1999. A genus-and species-specific nested polymerase chain reaction malaria detection assay for epidemiologic studies. Am J Trop Med Hyg 60: 687692. [Google Scholar]
  30. Veron V, Simon S, Carme B, , 2009. Multiplex real-time PCR detection of P. falciparum, P. vivax and P. malariae in human blood samples. Exp Parasitol 121: 346351. [Google Scholar]
  31. Methodology DHS. The Demographic Health Survey Program. Available at: http://dhsprogram.com/What-We-Do/Survey-Types/DHS-Methodology.cfm. Accessed September 1, 2017.
  32. Ministère du Plan et Suivi de la Mise en œuvre de la Révolution de la Modernité (MPSMRM), Ministère de la Santé Publique (MSP) et ICF International, 2014. Enquête Démographique et de Santé en République Démocratique du Congo 2013–2014. Rockville, MD: MPSMRM, MSP and ICF International.
  33. Wickham H, , 2017. Tidyverse: easily install and load ‘tidyverse’ packages. R Package Version. 1(1). Available at: https://tidyverse.tidyverse.org/. Accessed September 10, 2018.
  34. R Core Team, 2018. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Available at: https://www.R-project.org/. Accessed Septmeber 6, 2018.
  35. The IUCN Red List of Threatened Species, IUCN, 2016. Available at: http://www.iucnredlist.org. Accessed April 21, 2018. Version 2016-1.
  36. Abkallo HM, 2014. DNA from pre-erythrocytic stage malaria parasites is detectable by PCR in the faeces and blood of hosts. Int J Parasitol 44: 467473. [Google Scholar]
  37. Hupalo DN, 2016. Population genomics studies identify signatures of global dispersal and drug resistance in Plasmodium vivax. Nat Genet 48: 953958. [Google Scholar]
  38. Pearson RD, 2016. Genomic analysis of local variation and recent evolution in Plasmodium vivax. Nat Genet 48: 959964. [Google Scholar]
  39. Parobek CM, 2016. Selective sweep suggests transcriptional regulation may underlie Plasmodium vivax resilience to malaria control measures in Cambodia. Proc Natl Acad Sci USA 113: E8096E8105. [Google Scholar]
  40. Hester J, Chan ER, Menard D, Mercereau-Puijalon O, Barnwell J, Zimmerman PA, Serre D, , 2013. De novo assembly of a field isolate genome reveals novel Plasmodium vivax erythrocyte invasion genes. PLoS Negl Trop Dis 7: e2569. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.18-0277
Loading
/content/journals/10.4269/ajtmh.18-0277
Loading

Data & Media loading...

Supplemental tables and figure

  • Received : 01 Apr 2018
  • Accepted : 20 Jul 2018
  • Published online : 10 Sep 2018

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error