1921
Volume 99, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

In the context of the pre-elimination of malaria, biological control may provide an alternative or additional tool to current malaria control strategies. During their various stages of development, mosquitoes undergo subsequent changes in their associated microbiota, depending on their environment and nutritional status. Although s.l. and are the two major malaria vectors in Senegal, the composition of their microbiota is not yet well known. In this study, we explored the microbiota of mosquitoes naturally infected or not by () using the 16S ribosomal RNA gene-based bacterial metagenomic approach. In both vector species, the microbiota was more diverse in infected samples than in the noninfected ones, although the total number of reads appeared to be higher in noninfected mosquitoes. Overall, the microbiota was different between the two vector species. Noteworthy, the bacterial microbiota was significantly different between -positive and -negative groups whatever the species, but was similar between individuals of the same infection status within a species. Overall, the phylum of was the most predominant in both species, with bacteria of the genus outweighing the others in noninfected vectors. The presence of some specific bacterial species such as , , , and was also observed in -free samples only. These preliminary observations pave the way for further characterization of the mosquito microbiota to select promising bacterial candidates for potential use in an innovative approach to controlling malaria and overcoming the challenges to achieving a malaria-free world.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.18-0263
2018-10-22
2020-12-01
Loading full text...

Full text loading...

/deliver/fulltext/14761645/99/6/tpmd180263.html?itemId=/content/journals/10.4269/ajtmh.18-0263&mimeType=html&fmt=ahah

References

  1. World Health Organization, 2015. Rapport 2015 sur le Paludisme dans le Monde. Geneva, Switzerland: WHO, 32.
  2. Sougoufara S, Doucoure S, Backe Sembene PM, Harry M, Sokhna C, 2017. Challenges for malaria vector control in sub-Saharan Africa: resistance and behavioral adaptations in Anopheles populations. J Vector Borne Dis 54: 415.
    [Google Scholar]
  3. Vartoukian SR, Palmer RM, Wade WG, 2010. Strategies for culture of ‘unculturable’ bacteria. FEMS Microbiol Lett 309: 17.
    [Google Scholar]
  4. Pumpuni CB, Demaio J, Kent M, Davis JR, Beier JC, 1996. Bacterial population dynamics in three anopheline species: the impact on Plasmodium sporogonic development. Am J Trop Med Hyg 54: 214218.
    [Google Scholar]
  5. Straif SC, Mbogo CN, Toure AM, Walker ED, Kaufman M, Toure YT, Beier JC, 1998. Midgut bacteria in Anopheles gambiae and An. funestus (Diptera: Culicidae) from Kenya and Mali. J Med Entomol 35: 222226.
    [Google Scholar]
  6. Gonzalez-Ceron L, Santillan F, Rodriguez MH, Mendez D, Hernandez-Avila JE, 2003. Bacteria in midguts of field-collected Anopheles albimanus block Plasmodium vivax sporogonic development. J Med Entomol 40: 371374.
    [Google Scholar]
  7. Lozupone CA, Knight R, 2007. Global patterns in bacterial diversity. Proc Natl Acad Sci USA 104: 1143611440.
    [Google Scholar]
  8. Wang Y, Gilbreath T, Kukutla P, Yan G, Xu J, 2011. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS One 6: 19.
    [Google Scholar]
  9. Trape JF et al., 1994. The Dielmo project: a longitudinal study of natural malaria infection and the mechanisms of protective immunity in a community living in a holoendemic area of Senegal. Am J Trop Med Hyg 51: 123137.
    [Google Scholar]
  10. Konate L, Diagne N, Brahimi K, Faye O, Legros F, Rogier C, Petrarca V, Trape JF, 1994. Biology of the vectors and transmission of Plasmodium falciparum, P. malariae and P. ovale in a village in the savanna of west Africa (Dielmo, Senegal). Parasite 1: 325333.
    [Google Scholar]
  11. PNLP, 2015. Bulletin Epidemiologique Annuel du Paludisme au Senegal. Dakar, Senegal: Ministère de la Santé et de la Prévention.
  12. Diagne N, Fontenille D, Konate L, Faye O, Lamizana MT, Legros F, Molez JF, Trape JF, 1994. Anopheles of Senegal. An annotated and illustrated list. Bull Soc Pathol Exot 87: 267277.
    [Google Scholar]
  13. Sambou M, Faye N, Bassène H, Diatta G, Raoult D, Mediannikov O, 2014. Identification of rickettsial pathogens in ixodid ticks in northern Senegal. Ticks Tick Borne Dis 5: 552556.
    [Google Scholar]
  14. Magoc T, Salzberg SL, 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27: 29572963.
    [Google Scholar]
  15. Caporaso JG et al., 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7: 335336.
    [Google Scholar]
  16. Edgar RC, 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 24602461.
    [Google Scholar]
  17. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ, 1990. Basic local alignment search tool. J Mol Biol 215: 403410.
    [Google Scholar]
  18. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO, 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41: D590D596.
    [Google Scholar]
  19. Million M et al., 2016. Increased gut redox and depletion of anaerobic and methanogenic prokaryotes in severe acute malnutrition. Sci Rep 6: 26051.
    [Google Scholar]
  20. Angelakis E et al., 2016. Gut microbiome and dietary patterns in different Saudi populations and monkeys. Sci Rep 6: 32191.
    [Google Scholar]
  21. Dahmani M, Sambou M, Scandola P, Raoult D, Fenollar F, Mediannikov O, 2017. Bartonella bovis and Candidatus Bartonella davousti in cattle from Senegal. Comp Immunol Microbiol Infect Dis 50: 6369.
    [Google Scholar]
  22. Mediannikov O, Aubadie M, Bassene H, Diatta G, Granjon L, Fenollar F, 2014. Three new Bartonella species from rodents in Senegal. Int J Infect Dis 21: 335.
    [Google Scholar]
  23. World Health Organization, 2017. A framework for malaria elimination. Geneva, Switzerland: WHO.
    [Google Scholar]
  24. Mnzava AP, Knox TB, Temu EA, Trett A, Fornadel C, Hemingway J, Renshaw M, 2015. Implementation of the global plan for insecticide resistance management in malaria vectors: progress, challenges and the way forward. Malar J 14: 173.
    [Google Scholar]
  25. World Health Organization, 2012. Global Plan for Insecticide Resistance Management in Malaria Vectors (GPIRM). Geneva, Switzerland: WHO.
  26. Mancini M et al., 2016. Paratransgenesis to control malaria vectors: a semi-field pilot study. Parasit Vectors 9: 140.
    [Google Scholar]
  27. Boissière A et al., 2012. Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection. PLoS Pathog 8: 112.
    [Google Scholar]
  28. Akorli J, Gendrin M, Pels NA, Yeboah-Manu D, Christophides GK, Wilson MD, 2016. Seasonality and locality affect the diversity of Anopheles gambiae and Anopheles coluzzii midgut microbiota from Ghana. PLoS One 11: 118.
    [Google Scholar]
  29. Rani A, Sharma A, Rajagopal R, Adak T, Bhatnagar R, 2009. Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector. BMC Microbiol 9: 96.
    [Google Scholar]
  30. Dieme C, Rotureau B, Mitri C, 2017. Microbial pre-exposure and vectorial competence of Anopheles mosquitoes. Front Cell Infect Microbiol 7: 508.
    [Google Scholar]
  31. Favia G, Ricci I, Marzorati M, Negri I, Alma A, Sacchi L, Bandi C, Daffonchio D, 2008. Bacteria of the genus Asaia: a potential paratransgenic weapon against malaria. Adv Exp Med Biol 627: 4959.
    [Google Scholar]
  32. Bisi D, Lampe D, 2011. Secretion of anti-Plasmodium effector proteins from a natural Pantoea agglomerans isolate by using PelB and HlyA secretion signals. Appl Environ Microbiol 77: 46694675.
    [Google Scholar]
  33. Eappen AG, Smith RC, Jacobs-Lorena M, 2013. Enterobacter-activated mosquito immune responses to Plasmodium involve activation of SRPN6 in Anopheles stephensi. PLoS One 8: e62937.
    [Google Scholar]
  34. Andreolli M, Lampis S, Zenaro E, Salkinoja-Salonen M, Vallini G, 2011. Burkholderia fungorum DBT1: a promising bacterial strain for bioremediation of PAHs-contaminated soils. FEMS Microbiol Lett 319: 1118.
    [Google Scholar]
  35. Santos AV, Dillon RJ, Dillon VM, Reynolds SE, Samuels RI, 2004. Ocurrence of the antibiotic producing bacterium Burkholderia sp. in colonies of the leaf-cutting ant Atta sexdens rubropilosa. FEMS Microbiol Lett 239: 319323.
    [Google Scholar]
  36. Favia G et al., 2007. Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proc Natl Acad Sci USA 104: 90479051.
    [Google Scholar]
  37. Hoffmann AA, Ross PA, Rasic G, 2015. Wolbachia strains for disease control: ecological and evolutionary considerations. Evol Appl 8: 751768.
    [Google Scholar]
  38. Kambris Z, Blagborough AM, Pinto SB, Blagrove MS, Godfray HC, Sinden RE, Sinkins SP, 2010. Wolbachia stimulates immune gene expression and inhibits Plasmodium development in Anopheles gambiae. PLoS Pathog 6: e1001143.
    [Google Scholar]
  39. Shaw W, Marcenac P, Childs LM, Buckee CO, Baldini F, Sawadogo SP, Dabiré RK, Diabaté A, Catteruccia F, 2016. Wolbachia infections in natural Anopheles populations affect egg laying and negatively correlate with Plasmodium development. Nat Commun 7: 17.
    [Google Scholar]
  40. Yi H, Yong D, Lee K, Cho YJ, Chun J, 2014. Profiling bacterial community in upper respiratory tracts. BMC Infect Dis 14: 583.
    [Google Scholar]
  41. de Steenhuijsen Piters WA et al., 2016. Dysbiosis of upper respiratory tract microbiota in elderly pneumonia patients. ISME J 10: 97108.
    [Google Scholar]
  42. Skevaki CL, Tsialta P, Trochoutsou AI, Logotheti I, Makrinioti H, Taka S, Lebessi E, Paraskakis I, Papadopoulos NG, Tsolia MN, 2015. Associations between viral and bacterial potential pathogens in the nasopharynx of children with and without respiratory symptoms. Pediatr Infect Dis J 34: 12961301.
    [Google Scholar]
  43. Baldini F, Segata N, Pompon J, Marcenac P, Shaw WR, Dabiré RK, Diabaté A, Levashina EA, Catteruccia F, 2014. Evidence of natural Wolbachia infections in field populations of Anopheles gambiae. Nat Commun 5: 3985.
    [Google Scholar]
  44. Dia I, Sagnon N, Guelbeogo MW, Diallo M, 2011. Bionomics of sympatric chromosomal forms of Anopheles funestus (Diptera: Culicidae). J Vector Ecol 36: 343347.
    [Google Scholar]
  45. Samb B, Dia I, Konate L, Ayala D, Fontenille D, Cohuet A, 2012. Population genetic structure of the malaria vector Anopheles funestus, in a recently re-colonized area of the Senegal River basin and human-induced environmental changes. Parasit Vectors 5: 188.
    [Google Scholar]
  46. Samb B, Konate L, Irving H, Riveron JM, Dia I, Faye O, Wondji CS, 2016. Investigating molecular basis of lambda-cyhalothrin resistance in an Anopheles funestus population from Senegal. Parasit Vectors 9: 449.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.18-0263
Loading
/content/journals/10.4269/ajtmh.18-0263
Loading

Data & Media loading...

  • Received : 26 Mar 2018
  • Accepted : 22 Jul 2018
  • Published online : 22 Oct 2018
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error