1921
Volume 99, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Artemisinin resistance is rapidly rising in Southeast Asia and may spread to African countries, where efficacy estimates are currently still excellent. Extensive monitoring of parasite clearance dynamics after treatment is needed to determine whether responsiveness to artemisinin-based combination therapies (ACT) is changing in Africa. In this study, Kenyan children with uncomplicated malaria were randomly assigned to pyronaridine–artesunate (PA) or artemether–lumefantrine (AL) treatment. Parasite clearance was evaluated over 7 days following the start of treatment by quantitative polymerase chain reaction (qPCR) and direct-on-blood PCR nucleic acid lateral flow immunoassay (db-PCR-NALFIA), a simplified molecular malaria diagnostic. Residual parasitemia at day 7 was detected by qPCR in 37.1% (26/70) of AL-treated children and in 46.1% (35/76) of PA-treated participants ( = 0.275). Direct-on-blood PCR nucleic acid lateral flow immunoassay detected residual parasites at day 7 in 33.3% (23/69) and 30.3% (23/76) of AL and PA-treated participants, respectively ( = 0.692). qPCR-determined parasitemia at day 7 was associated with increased prevalence and density of gametocytes at baseline ( = 0.014 and = 0.003, for prevalence and density, respectively) and during follow-up ( = 0.007 and = 0.011, respectively, at day 7). A positive db-PCR-NALFIA outcome at day 7 was associated with treatment failure (odds ratio [OR]: 3.410, 95% confidence interval [CI]: 1.513–7.689, = 0.003), but this association was not found for qPCR (OR: 0.701, 95% CI: 0.312–1.578, = 0.391). Both qPCR and db-PCR-NALFIA detected substantial residual submicroscopic parasitemia after microscopically successful PA and AL treatment and can be useful tools to monitor parasite clearance. To predict treatment outcome, db-PCR-NALFIA may be more suitable than qPCR.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.18-0233
2018-08-13
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/14761645/99/4/tpmd180233.html?itemId=/content/journals/10.4269/ajtmh.18-0233&mimeType=html&fmt=ahah

References

  1. Ashley EA, Tracking Resistance to Artemisinin Collaboration (TRAC) , 2014. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 371: 411423. [Google Scholar]
  2. Fairhurst RM, Dondorp AM, , 2016. Artemisinin-resistant Plasmodium falciparum malaria. Microbiol Spectr 4: EI10-0013-2016. [Google Scholar]
  3. Dondorp AM, 2009. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361: 455467. [Google Scholar]
  4. Muwanguzi J, Henriques G, Sawa P, Bousema T, Sutherland CJ, , 2016. Lack of K13 mutations in Plasmodium falciparum persisting after artemisinin combination therapy treatment of Kenyan children. Malar J 15: 36. [Google Scholar]
  5. Escobar C, Pateira S, Lobo E, Lobo L, Teodosio R, Dias F, Fernandes N, Arez AP, Varandas L, Nogueira F, , 2015. Polymorphisms in Plasmodium falciparum K13-propeller in Angola and Mozambique after the introduction of the ACTs. PLoS One 10: e0119215. [Google Scholar]
  6. Isozumi R, Uemura H, Kimata I, Ichinose Y, Logedi J, Omar AH, Kaneko A, , 2015. Novel mutations in K13 propeller gene of artemisinin-resistant Plasmodium falciparum. Emerg Infect Dis 21: 490492. [Google Scholar]
  7. Kamau E, 2015. K13-propeller polymorphisms in Plasmodium falciparum parasites from sub-Saharan Africa. J Infect Dis 211: 13521355. [Google Scholar]
  8. Taylor SM, 2015. Absence of putative artemisinin resistance mutations among Plasmodium falciparum in sub-Saharan Africa: a molecular epidemiologic study. J Infect Dis 211: 680688. [Google Scholar]
  9. Borrmann S, 2011. Declining responsiveness of Plasmodium falciparum infections to artemisinin-based combination treatments on the Kenyan Coast. PLoS One 6: e26005. [Google Scholar]
  10. Gadalla NB, 2011. Increased pfmdr1 copy number and sequence polymorphisms in Plasmodium falciparum isolates from Sudanese malaria patients treated with artemether-lumefantrine. Antimicrob Agents Chemother 55: 54085411. [Google Scholar]
  11. Chang HH, 2016. Persistence of Plasmodium falciparum parasitemia after artemisinin combination therapy: evidence from a randomized trial in Uganda. Sci Rep 6: 26330. [Google Scholar]
  12. Betson M, Sousa-Figueiredo JC, Atuhaire A, Arinaitwe M, Adriko M, Mwesigwa G, Nabonge J, Kabatereine NB, Sutherland CJ, Stothard JR, , 2014. Detection of persistent Plasmodium spp. infections in Ugandan children after artemether-lumefantrine treatment. Parasitology 141: 18801890. [Google Scholar]
  13. Beshir KB, 2013. Residual Plasmodium falciparum parasitemia in kenyan children after artemisinin-combination therapy is associated with increased transmission to mosquitoes and parasite recurrence. J Infect Dis 208: 20172024. [Google Scholar]
  14. Duparc S, Borghini-fuhrer I, Craft JC, Arbe-barnes S, Miller RM, Shin C, Fleckenstein L, , 2013. Safety and efficacy of pyronaridine-artesunate in uncomplicated acute malaria: an integrated analysis of individual patient data from six randomized clinical trials. Malar J 12: 70. [Google Scholar]
  15. Wongsrichanalai C, Barcus MJ, Muth S, Sutamihardja A, Wernsdorfer WH, , 2007. A review of malaria diagnostic tools: microscopy and rapid diagnostic test (RDT). Am J Trop Med Hyg 77: 119127. [Google Scholar]
  16. Moody A, , 2002. Rapid diagnostic tests for malaria parasites. Clin Microbiol Rev 15: 6678. [Google Scholar]
  17. Murray CK, Gasser RA, Magill AJ, Miller RS, , 2008. Update on rapid diagnostic testing for malaria. Clin Microbiol Rev 21: 97110. [Google Scholar]
  18. Omar SA, Mens PF, Schoone GJ, Yusuf A, Mwangi J, Kaniaru S, Omer GAA, Schallig HDFH, , 2005. Plasmodium falciparum: evaluation of a quantitative nucleic acid sequence-based amplification assay to predict the outcome of sulfadoxine–pyrimethamine treatment of uncomplicated malaria. Exp Parasitol 110: 7379. [Google Scholar]
  19. Vasoo S, Pritt BS, , 2013. Molecular diagnostics and parasitic disease. Clin Lab Med 33: 461503. [Google Scholar]
  20. Mens P, 2012. Direct blood PCR in combination with nucleic acid lateral flow immunoassay for detection of Plasmodium species in settings where malaria is endemic. J Clin Microbiol 50: 35203525. [Google Scholar]
  21. Roth JM, de Bes L, Sawa P, Omweri G, Osoti V, Oberheitmann B, Schallig HDFH, Mens PF, , 2018. Plasmodium detection and differentiation by direct-on-blood PCR nucleic acid lateral flow immunoassay. J Mol Diagn 20: 7886. [Google Scholar]
  22. World Health Organization, 2009. Methods for Surveillance of Antimalarial Drug Efficacy. Geneva, Switzerland: WHO. Available at: http://www.who.int/malaria/publications/atoz/9789241597531/en/. Accessed December 19, 2017.
  23. World Health Organization, 2010. Basic Malaria Microscopy—Part I: Learner’s Guide, 2nd edition. Geneva, Switzerland: WHO.
  24. Snounou G, , 2002. Genotyping of Plasmodium spp. nested PCR. Methods Mol Med 72: 103116. [Google Scholar]
  25. World Health Organization, 2007. Methods and Techniques for Clinical Trials on Antimalarial Drug Efficacy: Genotyping to Identify Parasite Populations. Geneva, Switzerland: WHO. Available at: http://www.who.int/malaria/publications/atoz/9789241596305/en/. Accessed December 19, 2017.
  26. Kattenberg JH, Tahita CM, Versteeg IAJ, Tinto H, Traore-Coulibaly M, Schallig HDFH, Mens PF, , 2012. Antigen persistence of rapid diagnostic tests in pregnant women in Nanoro, Burkina Faso, and the implications for the diagnosis of malaria in pregnancy. Trop Med Int Health 17: 550557. [Google Scholar]
  27. Hermsen CC, Telgt DSC, Linders EHP, Van De Locht LATF, Eling WMC, Mensink EJBM, Sauerwein RW, , 2001. Detection of Plasmodium falciparum malaria parasites in vivo by real-time quantitative PCR. Mol Biochem Parasitol 118: 247251. [Google Scholar]
  28. Wang CW, Hermsen CC, Sauerwein RW, Arnot DE, Theander TG, Lavstsen T, , 2009. The Plasmodium falciparum var gene transcription strategy at the onset of blood stage infection in a human volunteer. Parasitol Int 58: 478480. [Google Scholar]
  29. Schneider P, Schoone G, Schallig H, Verhage D, Telgt D, Eling W, Sauerwein R, , 2004. Quantification of Plasmodium falciparum gametocytes in differential stages of development by quantitative nucleic acid sequence-based amplification. Mol Biochem Parasitol 137: 3541. [Google Scholar]
  30. White NJ, , 1997. Assessment of the pharmacodynamic properties of antimalarial drugs in vivo. Antimicrob Agents Chemother 41: 14131422. [Google Scholar]
  31. Beshir KB, Hallett RL, Eziefula AC, Bailey R, Watson J, Wright SG, Chiodini PL, Polley SD, Sutherland CJ, , 2010. Measuring the efficacy of anti-malarial drugs in vivo: quantitative PCR measurement of parasite clearance. Malar J 9: 312. [Google Scholar]
  32. Tshefu AK, Gaye O, Kayentao K, Thompson R, Bhatt KM, Sesay SSS, Bustos DG, Tjitra E, , 2010. Efficacy and safety of a fixed-dose oral combination of pyronaridine-artesunate compared with artemether-lumefantrine in children and adults with uncomplicated Plasmodium falciparum malaria: a randomised non-inferiority trial. Lancet 375: 14571467. [Google Scholar]
  33. Kayentao K, 2012. Pyronaridine-artesunate granules versus artemether-lumefantrine crushed tablets in children with Plasmodium falciparum malaria: a randomized controlled trial. Malar J 11: 364. [Google Scholar]
  34. Méndez F, Muñoz Á, Carrasquilla G, Jurado D, Arévalo-Herrera M, Cortese JF, Plowe CV, , 2002. Determinants of treatment response to sulfadoxine-pyrimethamine and subsequent transmission potential in falciparum malaria. Am J Epidemiol 156: 230238. [Google Scholar]
  35. Carrara VI, 2009. Changes in the treatment responses to artesunate-mefloquine on the northwestern border of Thailand during 13 years of continuous deployment. PLoS One 4: e4551. [Google Scholar]
  36. Das D, Price RN, Bethell D, Guerin PJ, Stepniewska K, , 2013. Early parasitological response following artemisinin-containing regimens: a critical review of the literature. Malar J 12: 125. [Google Scholar]
  37. Stepniewska K, 2010. In vivo parasitological measures of artemisinin susceptibility. J Infect Dis 201: 570579. [Google Scholar]
  38. Vijaykadga S, Alker AP, Satimai W, MacArthur JR, Meshnick SR, Wongsrichanalai C, , 2012. Delayed Plasmodium falciparum clearance following artesunate-mefloquine combination therapy in Thailand, 1997–2007. Malar J 11: 296. [Google Scholar]
  39. Greenhouse B, Dokomajilar C, Hubbard A, Rosenthal PJ, Dorsey G, , 2007. Impact of transmission intensity on the accuracy of genotyping to distinguish recrudescence from new infection in antimalarial clinical trials. Antimicrob Agents Chemother 51: 30963103. [Google Scholar]
  40. Lo E, Nguyen J, Oo W, Hemming-Schroeder E, Zhou G, Yang Z, Cui L, Yan G, , 2016. Examining Plasmodium falciparum and P. vivax clearance subsequent to antimalarial drug treatment in the Myanmar-China border area based on quantitative real-time polymerase chain reaction. BMC Infect Dis 16: 154. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.18-0233
Loading
/content/journals/10.4269/ajtmh.18-0233
Loading

Data & Media loading...

  • Received : 19 Mar 2018
  • Accepted : 07 May 2018
  • Published online : 13 Aug 2018

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error