Volume 99, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



bacteria are known to cause deviations from random mating and affect sperm competition (SC) in some of their arthropod hosts. Because these effects could influence the effectiveness of in mosquito population replacement and suppression programs, we developed a theoretical framework to investigate them and we collected relevant data for the Mel infection in . Using incompatibility patterns as a measure of mating success of infected versus uninfected mosquitoes, we found some evidence that uninfected males sire more offspring than infected males. However, our theoretical framework suggests that this effect is unlikely to hamper invasion and has only minor effects on population suppression programs. Nevertheless, we suggest that mating effects and SC need to be monitored in an ongoing manner in release programs, given the possibility of ongoing selection for altered mating patterns.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Hoffmann AA, Turelli M, , 1997. Cytoplasmic incompatibility in insects. O’Neill S, Hoffmann A, Werren J, eds. Influential Passengers. Oxford, United Kingdom: Oxford University Press, 42–80.
  2. Engelstädter J, Telschow A, , 2009. Cytoplasmic incompatibility and host population structure. Heredity (Edinb) 103: 196207. [Google Scholar]
  3. Kriesner P, Hoffmann AA, Lee SF, Turelli M, Weeks AR, , 2013. Rapid sequential spread of two Wolbachia variants in Drosophila simulans. PLoS Pathog 9: e1003607. [Google Scholar]
  4. Turelli M, Hoffmann AA, , 1991. Rapid spread of an inherited incompatibility factor in California Drosophila. Nature 353: 440442. [Google Scholar]
  5. Turelli M, , 1994. Evolution of incompatibility-inducing microbes and their hosts. Evolution 48: 15001513. [Google Scholar]
  6. Vala F, Egas M, Breeuwer JAJ, Sabelis MW, , 2004. Wolbachia affects oviposition and mating behaviour of its spider mite host. J Evol Biol 17: 692700. [Google Scholar]
  7. Hoffmann AA, Turelli M, Harshman LG, , 1990. Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans. Genetics 126: 933948. [Google Scholar]
  8. Champion de Crespigny FE, Hurst LD, Wedell N, , 2008. Do Wolbachia-associated incompatibilities promote polyandry? Evolution 62: 107122. [Google Scholar]
  9. Bian GW, Xu Y, Lu P, Xie Y, Xi ZY, , 2010. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog 6: e1000833. [Google Scholar]
  10. van den Hurk AF, Hall-Mendelin S, Pyke AT, Frentiu FD, McElroy K, Day A, Higgs S, O’Neill SL, , 2012. Impact of Wolbachia on infection with chikungunya and yellow fever viruses in the mosquito vector Aedes aegypti. PLoS Negl Trop Dis 6: e1892. [Google Scholar]
  11. Kambris Z, Cook PE, Phuc HK, Sinkins SP, , 2009. Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes. Science 326: 134136. [Google Scholar]
  12. Moreira LA, 2009. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139: 12681278. [Google Scholar]
  13. McMeniman CJ, Lane RV, Cass BN, Fong AWC, Sidhu M, Wang YF, O’Neill SL, , 2009. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 323: 141144. [Google Scholar]
  14. Walker T, 2011. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476: 450453. [Google Scholar]
  15. Yeap HL, 2011. Dynamics of the “popcorn” Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control. Genetics 187: 583595. [Google Scholar]
  16. Laven H, , 1967. Eradication of Culex pipiens fatigans through cytoplasmic incompatibility. Nature 216: 383384. [Google Scholar]
  17. Hoffmann AA, 2011. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476: 454457. [Google Scholar]
  18. Ross PA, Endersby NM, Hoffmann AA, , 2016. Costs of three Wolbachia infections on the survival of Aedes aegypti larvae under starvation conditions. PLoS Negl Trop Dis 10: e0004320. [Google Scholar]
  19. Ross PA, Wiwatanaratanabutr I, Axford JK, White VL, Endersby-Harshman NM, Hoffmann AA, , 2017. Wolbachia infections in Aedes aegypti differ markedly in their response to cyclical heat stress. PLoS Pathog 13: e1006006. [Google Scholar]
  20. Turley AP, Zalucki MP, O’Neill SL, McGraw EA, , 2013. Transinfected Wolbachia have minimal effects on male reproductive success in Aedes aegypti. Parasit Vectors 6: 36. [Google Scholar]
  21. Yeap HL, Axford JK, Popovici J, Endersby NM, Iturbe-Ormaetxe I, Ritchie SA, Hoffmann AA, , 2014. Assessing quality of life-shortening Wolbachia-infected Aedes aegypti mosquitoes in the field based on capture rates and morphometric assessments. Parasit Vectors 7: 58. [Google Scholar]
  22. Yeap HL, Rasic G, Endersby-Harshman NM, Lee SF, Arguni E, Le Nguyen H, Hoffmann AA, , 2016. Mitochondrial DNA variants help monitor the dynamics of Wolbachia invasion into host populations. Heredity (Edinb) 116: 265276. [Google Scholar]
  23. Segoli M, Hoffmann AA, Lloyd J, Omodei GJ, Ritchie SA, , 2014. The effect of virus-blocking Wolbachia on male competitiveness of the dengue vector mosquito, Aedes aegypti. PLoS Negl Trop Dis 8: e3294. [Google Scholar]
  24. Axford JK, Ross PA, Yeap HL, Callahan AG, Hoffmann AA, , 2016. Fitness of wAlbB Wolbachia infection in Aedes aegypti: parameter estimates in an outcrossed background and potential for population invasion. Am J Trop Med Hyg 94: 507516. [Google Scholar]
  25. Craig GB, Jr., 1967. Mosquitoes: female monogamy induced by male accessory gland substance. Science 156: 14991501. [Google Scholar]
  26. Fuchs MS, Craig GB, Jr. Despommi DD, , 1969. The protein nature of the substance inducing female monogamy in Aedes aegypti. J Insect Physiol 15: 701709. [Google Scholar]
  27. Jones JC, , 1973. Are mosquitos monogamous? Nature 242: 343344. [Google Scholar]
  28. Spielman A, Leahy MG, Skaff V, , 1967. Seminal loss in repeatedly mated female Aedes aegypti. Biol Bull 132: 404412. [Google Scholar]
  29. Christophers SSR, , 1960. Aedes aegypti (L.) the Yellow Fever Mosquito; Its Life History, Bionomics and Structure. New York, NY: Cambridge University Press.
  30. Roth LM, , 1948. A study of mosquito behavior—an experimental laboratory study of the sexual behavior of Aedes aegypti (Linnaeus). Am Midl Nat 40: 265352. [Google Scholar]
  31. Richardson JB, Jameson SB, Gloria-Soria A, Wesson DM, Powell J, , 2015. Evidence of limited polyandry in a natural population of Aedes aegypti. Am J Trop Med Hyg 93: 189193. [Google Scholar]
  32. Wade MJ, Chang NW, , 1995. Increased male-fertility in Tribolium confusum beetles after infection with the intracellular parasite Wolbachia. Nature 373: 7274. [Google Scholar]
  33. Hoffmann AA, Hercus M, Dagher H, , 1998. Population dynamics of the Wolbachia infection causing cytoplasmic incompatibility in Drosophila melanogaster. Genetics 148: 221231. [Google Scholar]
  34. De Crespigny FEC, Pitt TD, Wedell N, , 2006. Increased male mating rate in Drosophila is associated with Wolbachia infection. J Evol Biol 19: 19641972. [Google Scholar]
  35. Ponlawat A, Harrington LC, , 2009. Factors associated with male mating success of the dengue vector mosquito, Aedes aegypti. Am J Trop Med Hyg 80: 395400. [Google Scholar]
  36. Duhrkopf RE, Hartberg WK, , 1992. Differences in male mating response and female flight sounds in Aedes aegypti and Ae. albopictus (Diptera, Culicidae). J Med Entomol 29: 796801. [Google Scholar]
  37. Cator LJ, Arthur BJ, Harrington LC, Hoy RR, , 2009. Harmonic convergence in the love songs of the dengue vector mosquito. Science 323: 10771079. [Google Scholar]
  38. Cator LJ, Harrington LC, , 2011. The harmonic convergence of fathers predicts the mating success of sons in Aedes aegypti. Anim Behav 82: 627633. [Google Scholar]
  39. Ross PA, Endersby NM, Yeap HL, Hoffmann AA, , 2014. Larval competition extends developmental time and decreases adult size of wMelPop Wolbachia-infected Aedes aegypti. Am J Trop Med Hyg 91: 198205. [Google Scholar]
  40. Yeap HL, Endersby NM, Johnson PH, Ritchie SA, Hoffmann AA, , 2013. Body size and wing shape measurements as quality indicators of Aedes aegypti mosquitoes destined for field release. Am J Trop Med Hyg 89: 7892. [Google Scholar]
  41. Koenraadt CJ, , 2008. Pupal dimensions as predictors of adult size in fitness studies of Aedes aegypti (Diptera: Culicidae). J Med Entomol 45: 331336. [Google Scholar]
  42. Ritchie SA, Montgomery BL, Hoffmann AA, , 2013. Novel estimates of Aedes aegypti (Diptera: Culicidae) population size and adult survival based on Wolbachia releases. J Med Entomol 50: 624631. [Google Scholar]
  43. Ritchie SA, Pyke AT, Hall-Mendelin S, Day A, Mores CN, Christofferson RC, Gubler DJ, Bennett SN, van den Hurk AF, , 2013. An explosive epidemic of DENV-3 in Cairns, Australia. PLoS One 8: e68137. [Google Scholar]
  44. South A, Catteruccia F, , 2016. Sexual selection and the evolution of mating systems in mosquitoes. Adv In Insect Phys 51: 6792. [Google Scholar]
  45. Schmidt T, Filipović IA, Hoffmann A, Rašić G, , 2018. Fine-scale landscape genomics helps explain the slow spatial spread of Wolbachia through the Aedes aegypti population in Cairns, Australia. Heredity 120: 386395. [Google Scholar]
  46. Atkinson MP, Su Z, Alphey N, Alphey LS, Coleman PG, Wein LM, , 2007. Analyzing the control of mosquito-borne diseases by a dominant lethal genetic system. Proc Natl Acad Sci U S A 104: 95409545. [Google Scholar]
  47. Alphey L, Benedict M, Bellini R, Clark GG, Dame DA, Service MW, Dobson SL, , 2010. Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne Zoonotic Dis 10: 295311. [Google Scholar]
  48. Hendrichs J, Vreysen MJB, Enkerlin WR, Cayol JP, , 2005. Strategic options in using sterile insects for area-wide integrated pest management. Dyck VA, Hendrichs J, Robinson AS, eds. Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management. Dordrecht, The Netherlands: Springer Netherlands, 563–600.
  49. Phuc HK, 2007. Late-acting dominant lethal genetic systems and mosquito control. BMC Biol 5: 11. [Google Scholar]
  50. Fried M, , 1971. Determination of sterile-insect competitiveness. J Econ Entomol 64: 869. [Google Scholar]
  51. Hoffmann AA, Iturbe-Ormaetxe I, Callahan AG, Phillips BL, Billington K, Axford JK, Montgomery B, Turley AP, O’Neill SL, , 2014. Stability of the wMel Wolbachia infection following invasion into Aedes aegypti populations. PLoS Negl Trop Dis 8: e3115. [Google Scholar]
  52. Turelli M, , 2010. Cytoplasmic incompatibility in populations with overlapping generations. Evolution 64: 232241. [Google Scholar]
  53. Cabrera M, Jaffe K, , 2007. An aggregation pheromone modulates lekking behavior in the vector mosquito Aedes aegypti (Diptera: Culicidae). J Am Mosq Control Assoc 23: 110. [Google Scholar]
  54. Oliva CF, Damiens D, Benedict MQ, , 2014. Male reproductive biology of Aedes mosquitoes. Acta Trop 132 (Suppl): S12S19. [Google Scholar]
  55. Schmidt TL, 2017. Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes aegypti. PLoS Biol 15: e2001894. [Google Scholar]
  56. Turelli M, Barton NH, , 2017. Deploying dengue-suppressing Wolbachia: Robust models predict slow but effective spatial spread in Aedes aegypti. Theor Popul Biol 115: 4560. [Google Scholar]

Data & Media loading...

Supplemental materials

  • Received : 28 Feb 2018
  • Accepted : 22 May 2018
  • Published online : 02 Jul 2018

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error