Volume 99, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Flaviviruses such as Zika, dengue, and yellow fever cause epidemics throughout the tropics and account for substantial global morbidity and mortality. Although malaria and other vector-borne diseases have long been appreciated in Africa, flavivirus epidemiology is incompletely understood. Despite the existence of an effective vaccine, yellow fever continues to cause outbreaks and deaths, including at least 42 fatalities in the Democratic Republic of the Congo (DRC) in 2016. Here, we leveraged biospecimens collected as part of the nationally representative 2013–2014 Demographic and Health Survey in the DRC to examine serological evidence of flavivirus infection or vaccination in children aged 6 months to 5 years. Even in this young stratum of the Congolese population, we find evidence of infection by dengue and Zika viruses based on results from enzyme-linked immunosorbent assay and neutralization assay. Surprisingly, there was remarkable discordance between reported yellow fever vaccination status and results of serological assays. The estimated seroprevalences of neutralizing antibodies against each virus are yellow fever, 6.0% (95% confidence interval [CI] = 4.6–7.5%); dengue, 0.4% (0.1–0.9%); and Zika, 0.1% (0.0–0.5%). These results merit targeted, prospective studies to assess effectiveness of yellow fever vaccination programs, determine flavivirus seroprevalence across a broader age range, and investigate how these emerging diseases contribute to the burden of acute febrile illness in the DRC.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Guzman MG, Harris E, , 2015. Dengue. Lancet 385: 453465. [Google Scholar]
  2. Krauer F, Riesen M, Reveiz L, Oladapo OT, Martínez-Vega R, Porgo TV, Haefliger A, Broutet NJ, Low N, WHO Zika Causality Working Group; , 2017. Zika virus infection as a cause of congenital brain abnormalities and Guillain–Barré Syndrome: systematic review. PLoS Med 14: e1002203. [Google Scholar]
  3. Brès PL, , 1986. A century of progress in combating yellow fever. Bull World Health Organ 64: 775786. [Google Scholar]
  4. Hills SL, Russell K, Hennessey M, Williams C, Oster AM, Fischer M, Mead P, , 2016. Transmission of Zika virus through sexual contact with travelers to areas of ongoing transmission—continental United States, 2016. MMWR Morb Mortal Wkly Rep 65: 215216. [Google Scholar]
  5. Musso D, Gubler DJ, , 2016. Zika virus. Clin Microbiol Rev 29: 487524. [Google Scholar]
  6. Amarasinghe A, Kuritsk JN, Letson GW, Margolis HS, , 2011. Dengue virus infection in Africa. Emerg Infect Dis 17: 13491354. [Google Scholar]
  7. Leder K, 2017. Zika beyond the Americas: travelers as sentinels of Zika virus transmission. A GeoSentinel analysis, 2012 to 2016. PLoS One 12: e0185689. [Google Scholar]
  8. World Health Organization, 2016. Yellow Fever Situation Report. Available at: http://www.who.int/emergencies/yellow-fever/situation-reports/30-september-2016/en/. Accessed December 1, 2017.
  9. Robertson SE, Hull BP, Tomori O, Bele O, LeDuc JW, Esteves K, , 1996. Yellow fever: a decade of reemergence. JAMA 276: 11571162. [Google Scholar]
  10. Gardner CL, Ryman KD, , 2010. Yellow fever: a reemerging threat. Clin Lab Med 30: 237260. [Google Scholar]
  11. World Health Organization, 2017. WHO Vaccine-Preventable Diseases: Monitoring System. 2017 Global Summary. Available at: http://apps.who.int/immunization_monitoring/globalsummary. Accessed December 1, 2017.
  12. Otshudiema JO, 2017. Yellow fever outbreak—Kongo Central Province, Democratic Republic of the Congo, August 2016. MMWR Morb Mortal Wkly Rep 66: 335338. [Google Scholar]
  13. World Health Organization, 2010. Yellow Fever in the Democratic Republic of the Congo. Available at: http://www.who.int/csr/don/2010_07_19a/en/. Accessed December 1, 2017.
  14. ICF International, 2012. MEASURE DHS Biomarker Field Manual. Calverton, MD: ICF International.
  15. Collins MH, McGowan E, Jadi R, Young E, Lopez CA, Baric RS, Lazear HM, de Silva AM, , 2017. Lack of durable cross-neutralizing antibodies against Zika virus from dengue virus infection. Emerg Infect Dis 23: 773781. [Google Scholar]
  16. Tissera H, Amarasinghe A, De Silva AD, Kariyawasam P, Corbett KS, Katzelnick L, Tam C, Letson GW, Margolis HS, de Silva AM, , 2014. Burden of dengue infection and disease in a pediatric cohort in urban Sri Lanka. Am J Trop Med Hyg 91: 132137. [Google Scholar]
  17. Corbett KS, Katzelnick L, Tissera H, Amerasinghe A, De Silva AD, de Silva AM, , 2015. Preexisting neutralizing antibody responses distinguish clinically inapparent and apparent dengue virus infections in a Sri Lankan pediatric cohort. J Infect Dis 211: 590599. [Google Scholar]
  18. Micallef L, Rodgers P, , 2014. eulerAPE: drawing area-proportional 3-Venn diagrams using ellipses. PLoS One 9: e101717. [Google Scholar]
  19. Hulsen T, de Vlieg J, Alkema W, , 2008. BioVenn—a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics 9: 488. [Google Scholar]
  20. Rothman KJ, , 2015. Episheet: Spreadsheets for the Analysis of Epidemiologic Data. Available at: http://www.krothman.org/episheet.xls. Accessed January 21, 2018.
  21. Roehrig JT, Hombach J, Barrett AD, , 2008. Guidelines for plaque-reduction neutralization testing of human antibodies to dengue viruses. Viral Immunol 21: 123132. [Google Scholar]
  22. Swanstrom JA, Plante JA, Plante KS, Young EF, McGowan E, Gallichotte EN, Widman DG, Heise MT, de Silva AM, Baric RS, , 2016. Dengue virus envelope dimer epitope monoclonal antibodies isolated from dengue patients are protective against Zika virus. MBio 7: e0112316. [Google Scholar]
  23. World Health Organization, 2014. Disease Outbreak News Archive, Yellow Fever. Available at: http://www.who.int/csr/don/archive/disease/yellow_fever/en/. Accessed July 1, 2017.
  24. Doctor SM, 2016. Malaria surveillance in the Democratic Republic of the Congo: comparison of microscopy, PCR, and rapid diagnostic test. Diagn Microbiol Infect Dis 85: 1618. [Google Scholar]
  25. Nur YA, Groen J, Heuvelmans H, Tuynman W, Copra C, Osterhaus AD, , 1999. An outbreak of West Nile fever among migrants in Kisangani, Democratic Republic of Congo. Am J Trop Med Hyg 61: 885888. [Google Scholar]
  26. Kading RC, Borland EM, Cranfield M, Powers AM, , 2013. Prevalence of antibodies to alphaviruses and flaviviruses in free-ranging game animals and nonhuman primates in the greater Congo Basin. J Wildl Dis 49: 587599. [Google Scholar]
  27. Braga C, Luna CF, Martelli CM, de Souza WV, Cordeiro MT, Alexander N, de Albuquerque Mde F, Júnior JC, Marques ET, , 2010. Seroprevalence and risk factors for dengue infection in socio-economically distinct areas of Recife, Brazil. Acta Trop 113: 234240. [Google Scholar]
  28. Amaya-Larios IY, Martínez-Vega RA, Mayer SV, Galeana-Hernández M, Comas-García A, Sepúlveda-Salinas KJ, Falcón-Lezama JA, Vasilakis N, Ramos-Castañeda J, , 2014. Seroprevalence of neutralizing antibodies against dengue virus in two localities in the state of Morelos, Mexico. Am J Trop Med Hyg 91: 10571065. [Google Scholar]
  29. Prayitno A, 2017. Dengue seroprevalence and force of primary infection in a representative population of urban dwelling Indonesian children. PLoS Negl Trop Dis 11: e0005621. [Google Scholar]
  30. Aubry M, 2017. Zika virus seroprevalence, French Polynesia, 2014–2015. Emerg Infect Dis 23: 669672. [Google Scholar]
  31. Saba Villarroel PM, 2018. Zika virus epidemiology in Bolivia: a seroprevalence study in volunteer blood donors. PLoS Negl Trop Dis 12: e0006239. [Google Scholar]
  32. Prasad N, Murdoch DR, Reyburn H, Crump JA, , 2015. Etiology of severe febrile illness in low- and middle-income countries: a systematic review. PLoS One 10: e0127962. [Google Scholar]
  33. Mbanzulu KM, Wumba R, Mukendi JK, Zanga JK, Shija F, Bobanga TL, Aloni MN, Misinzo G, , 2017. Mosquito-borne viruses circulating in Kinshasa, Democratic Republic of the Congo. Int J Infect Dis 57: 3237. [Google Scholar]
  34. Braack L, Gouveia De Almeida AP, Cornel AJ, Swanepoel R, de Jager C, , 2018. Mosquito-borne arboviruses of African origin: review of key viruses and vectors. Parasit Vectors 11: 29. [Google Scholar]
  35. Schwarz NG, 2017. No serological evidence for zika virus infection and low specificity for anti-Zika virus ELISA in malaria positive individuals among pregnant women from Madagascar in 2010. PLoS One 12: e0176708. [Google Scholar]
  36. Van Esbroeck M, Meersman K, Michiels J, Ariën K, Van den Bossche D, , 2016. Letter to the editor: specificity of Zika virus ELISA: interference with malaria. Euro Surveill 21: pii=30237. [Google Scholar]
  37. Watanaveeradej V, Endy TP, Samakoses R, Kerdpanich A, Simasathien S, Polprasert N, Aree C, Vaughn DW, Ho C, Nisalak A, , 2003. Transplacentally transferred maternal-infant antibodies to dengue virus. Am J Trop Med Hyg 69: 123128. [Google Scholar]
  38. Pengsaa K, 2006. Dengue virus infections in the first 2 years of life and the kinetics of transplacentally transferred dengue neutralizing antibodies in Thai children. J Infect Dis 194: 15701576. [Google Scholar]
  39. van Panhuis WG, Luxemburger C, Pengsaa K, Limkittikul K, Sabchareon A, Lang J, Durbin AP, Cummings DA, , 2011. Decay and persistence of maternal dengue antibodies among infants in Bangkok. Am J Trop Med Hyg 85: 355362. [Google Scholar]
  40. Halstead SB, Lan NT, Myint TT, Shwe TN, Nisalak A, Kalyanarooj S, Nimmannitya S, Soegijanto S, Vaughn DW, Endy TP, , 2002. Dengue hemorrhagic fever in infants: research opportunities ignored. Emerg Infect Dis 8: 14741479. [Google Scholar]
  41. Lee PX, Ong LC, Libau EA, Alonso S, , 2016. Relative contribution of dengue IgG antibodies acquired during gestation or breastfeeding in mediating dengue disease enhancement and protection in type I interferon receptor-deficient mice. PLoS Negl Trop Dis 10: e0004805. [Google Scholar]
  42. Gotuzzo E, Yactayo S, Córdova E, , 2013. Review article: efficacy and duration of immunity after yellow fever vaccination: systematic review on the need for a booster every 10 years. Am J Trop Med Hyg 89: 434444. [Google Scholar]
  43. World Health Organization, 2013. Meeting of the strategic advisory group of experts on immunization, April 2013—conclusions and recommendations. Wkly Epidemiol Rec 88: 201206. [Google Scholar]
  44. Staples JE, Bocchini JA, Jr. Rubin L, Fischer M, , 2015. Yellow fever vaccine booster doses: recommendations of the advisory committee on immunization practices, 2015. MMWR Morb Mortal Wkly Rep 64: 647650. [Google Scholar]
  45. Amanna IJ, Slifka MK, , 2016. Questions regarding the safety and duration of immunity following live yellow fever vaccination. Expert Rev Vaccines 15: 15191533. [Google Scholar]
  46. Grobusch MP, Goorhuis A, Wieten RW, Verberk JD, Jonker EF, van Genderen PJ, Visser LG, , 2013. Yellow fever revaccination guidelines change—a decision too feverish? Clin Microbiol Infect 19: 885886. [Google Scholar]
  47. Collaborative Group for Studies on Yellow Fever Vaccines, 2014. Duration of post-vaccination immunity against yellow fever in adults. Vaccine 32: 49774984. [Google Scholar]
  48. Patel D, Simons H, , 2013. Yellow fever vaccination: is one dose always enough? Travel Med Infect Dis 11: 266273. [Google Scholar]
  49. Belmusto-Worn VE, 2005. Randomized, double-blind, phase III. Pivotal field trial of the comparative immunogenicity, safety, and tolerability of two yellow fever 17D vaccines (ARILVAX and YF-VAX®) in healthy infants and children in Peru. Am J Trop Med Hyg 72: 189197. [Google Scholar]
  50. Osei-Kwasi M, Dunyo SK, Koram KA, Afari EA, Odoom JK, Nkrumah FK, , 2001. Antibody response to 17D yellow fever vaccine in Ghanaian infants. Bull World Health Organ 79: 10561059. [Google Scholar]
  51. Collaborative Group for Studies of Yellow Fever Vaccine, 2015. A randomised double-blind clinical trial of two yellow fever vaccines prepared with substrains 17DD and 17D-213/77 in children nine-23 months old. Mem Inst Oswaldo Cruz 110: 771780. [Google Scholar]
  52. Nascimento Silva JR, Camacho LA, Siqueira MM, Freire Mde S, Castro YP, Maia Mde L, Yamamura AM, Martins RM, Leal Mde L, Collaborative Group for the Study of Yellow Fever Vaccines; , 2011. Mutual interference on the immune response to yellow fever vaccine and a combined vaccine against measles, mumps and rubella. Vaccine 29: 63276334. [Google Scholar]
  53. Lhuillier M, Mazzariol MJ, Zadi S, Le Cam N, Bentejac MC, Adamowicz L, Marie FN, Fritzell B, , 1989. Study of combined vaccination against yellow fever and measles in infants from six to nine months. J Biol Stand 17: 915. [Google Scholar]
  54. Stefano I, 1999. Recent immunization against measles does not interfere with the sero-response to yellow fever vaccine. Vaccine 17: 10421046. [Google Scholar]
  55. Michel R, 2015. Observational study on immune response to yellow fever and measles vaccines in 9 to 15-month old children. Is it necessary to wait 4 weeks between two live attenuated vaccines? Vaccine 33: 23012306. [Google Scholar]
  56. Ministère du Plan et Suivi de la Mise en oeuvre de la Révolution de la Modernité (MPSMRM), Ministère de la Santé Publique (MSP), ICF International, 2014. Enquête Démographique et de Santé en République Démocratique du Congo 2013–2014. Rockville, MD: MPSMRM, MSP and ICF International.
  57. Rytter MJ, Kolte L, Briend A, Friis H, Christensen VB, , 2014. The immune system in children with malnutrition—a systematic review. PLoS One 9: e105017. [Google Scholar]
  58. Brown RE, Katz M, , 1966. Failure of antibody production to yellow fever vaccine in children with Kwashiorkor. Trop Geogr Med 18: 125128. [Google Scholar]
  59. Anonymous, 1967. Effects of malnutrition on smallpox and yellow fever vaccination. Nutr Rev 25: 108110. [Google Scholar]
  60. Monath TP, Vasconcelos PF, , 2015. Yellow fever. J Clin Virol 64: 160173. [Google Scholar]
  61. World Health Organization, 2014. Disease Outbreak News Archive, Yellow Fever. Available at: http://www.who.int/csr/don/archive/disease/yellow_fever/en/. Accessed July 1, 2017.

Data & Media loading...

Supplemental Figures

  • Received : 20 Feb 2018
  • Accepted : 11 Apr 2018
  • Published online : 09 Jul 2018

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error