1921
Volume 99, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Timely identification and treatment of malaria transmission “hot spots” is essential to achieve malaria elimination. Here we investigate the relevance of using an salivary biomarker to estimate malaria exposure risk along the Thailand–Myanmar border to guide malaria control. Between May 2013 and December 2014, > 9,000 blood samples collected in a cluster randomized control trial were screened with serological assays to measure the antibody responses to salivary antigen (gSG6-P1) and malaria antigens (circumsporozoite protein, merozoite surface protein 119 [MSP-1]). infections were monitored through passive and active case detection. Seroprevalence to gSG6-P1, MSP-1, and CSP were 71.8% (95% Confidence interval [CI]: 70.9, 72.7), 68.6% (95% CI: 67.7, 69.5), and 8.6% (95% CI: 8.0, 9.2), respectively. Multivariate analysis showed that individuals with the highest Ab response to gSG6-P1 had six times the odds of being positive to CSP antigens ( < 0.001) and two times the odds of infection compared with low gSG6-P1 responders ( = 0.004). Spatial scan statistics revealed the presence of clusters of gSG6-P1 that partially overlapped infections. The gSG6-P1 salivary biomarker represents a good proxy for estimating malaria risk and could serve to implement hot spot–targeted vector control interventions to achieve malaria elimination.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.18-0081
2018-06-04
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/14761645/99/2/tpmd180081.html?itemId=/content/journals/10.4269/ajtmh.18-0081&mimeType=html&fmt=ahah

References

  1. Imwong M, 2015. The epidemiology of subclinical malaria infections in south-east Asia: findings from cross-sectional surveys in Thailand–Myanmar border areas, Cambodia, and Vietnam. Malar J 14: 381. [Google Scholar]
  2. Carrara VI, 2013. Malaria burden and artemisinin resistance in the mobile and migrant population on the Thai–Myanmar border, 1999–2011: an observational study. PLoS Med 10: e1001398. [Google Scholar]
  3. Parker DM, 2015. Microgeography and molecular epidemiology of malaria at the Thailand–Myanmar border in the malaria pre-elimination phase. Malar J 14: 198. [Google Scholar]
  4. Phyo AP, 2012. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet 379: 19601966. [Google Scholar]
  5. Phyo AP, 2016. Declining efficacy of artemisinin combination therapy against P. falciparum malaria on the Thai–Myanmar border (2003–2013): the role of parasite genetic factors. Clin Infect Dis 63: 784791. [Google Scholar]
  6. Thu AM, Phyo AP, Landier J, Parker DM, Nosten FH, , 2017. Combating multidrug-resistant Plasmodium falciparum malaria. FEBS J 284: 25692578. [Google Scholar]
  7. Landier J, Parker DM, Thu AM, Carrara VI, Lwin KM, Bonnington CA, Pukrittayakamee S, Delmas G, Nosten FH, , 2016. The role of early detection and treatment in malaria elimination. Malar J 15: 363. [Google Scholar]
  8. Bousema T, Griffin JT, Sauerwein RW, Smith DL, Churcher TS, Takken W, Ghani A, Drakeley C, Gosling R, , 2012. Hitting hotspots: spatial targeting of malaria for control and elimination. PLoS Med 9: e1001165. [Google Scholar]
  9. Mbogo CM, 2003. Spatial and temporal heterogeneity of Anopheles mosquitoes and Plasmodium falciparum transmission along the Kenyan coast. Am J Trop Med Hyg 68: 734742. [Google Scholar]
  10. Imwong M, Nakeesathit S, Day NP, White NJ, , 2011. A review of mixed malaria species infections in anopheline mosquitoes. Malar J 10: 253. [Google Scholar]
  11. Kelly-Hope LA, McKenzie FE, , 2009. The multiplicity of malaria transmission: a review of entomological inoculation rate measurements and methods across sub-Saharan Africa. Malar J 8: 19. [Google Scholar]
  12. Cook J, Reid H, Iavro J, Kuwahata M, Taleo G, Clements A, McCarthy J, Vallely A, Drakeley C, , 2010. Using serological measures to monitor changes in malaria transmission in Vanuatu. Malar J 9: 169. [Google Scholar]
  13. Longley RJ, 2017. Asymptomatic Plasmodium vivax infections induce robust IgG responses to multiple blood-stage proteins in a low-transmission region of western Thailand. Malar J 16: 178. [Google Scholar]
  14. Helb DA, 2015. Novel serologic biomarkers provide accurate estimates of recent Plasmodium falciparum exposure for individuals and communities. Proc Natl Acad Sci U S A 112: E4438E4447. [Google Scholar]
  15. Drakeley CJ, 2005. Estimating medium- and long-term trends in malaria transmission by using serological markers of malaria exposure. Proc Natl Acad Sci U S A 102: 51085113. [Google Scholar]
  16. Ataíde R, 2017. Declining transmission and immunity to malaria and emerging artemisinin resistance in Thailand: a longitudinal study. J Infect Dis 216: 723731. [Google Scholar]
  17. Elliott SR, Fowkes FJ, Richards JS, Reiling L, Drew DR, Beeson JG, , 2014. Research priorities for the development and implementation of serological tools for malaria surveillance. F1000Prime Rep 6: 100. [Google Scholar]
  18. Doucoure S, Drame PM, , 2015. Salivary biomarkers in the control of mosquito-borne diseases. Insects 6: 961976. [Google Scholar]
  19. Ya-Umphan P, Cerqueira D, Parker DM, Cottrell G, Poinsignon A, Remoue F, Brengues C, Chareonviriyaphap T, Nosten F, Corbel V, , 2017. Use of an Anopheles salivary biomarker to assess malaria transmission risk along the Thailand–Myanmar border. J Infect Dis 215: 396404. [Google Scholar]
  20. Landier J, 2017. Safety and effectiveness of mass drug administration to accelerate elimination of artemisinin-resistant falciparum malaria: a pilot trial in four villages of eastern Myanmar. Wellcome Open Res 2: 81. [Google Scholar]
  21. Imwong M, Hanchana S, Malleret B, Renia L, Day NP, Dondorp A, Nosten F, Snounou G, White NJ, , 2014. High-throughput ultrasensitive molecular techniques for quantifying low-density malaria parasitemias. J Clin Microbiol 52: 33033309. [Google Scholar]
  22. Poinsignon A, 2008. Novel peptide marker corresponding to salivary protein gSG6 potentially identifies exposure to Anopheles bites. PLoS One 3: e2472. [Google Scholar]
  23. Poinsignon A, Remoue F, Rossignol M, Cornelie S, Courtin D, Grebaut P, Garcia A, Simondon F, , 2008. Human IgG antibody response to glossina saliva: an epidemiologic marker of exposure to glossina bites. Am J Trop Med Hyg 78: 750753. [Google Scholar]
  24. Ambrosino E, 2010. A multiplex assay for the simultaneous detection of antibodies against 15 Plasmodium falciparum and Anopheles gambiae saliva antigens. Malar J 9: 317. [Google Scholar]
  25. Kulldorff MaIMSI, Inc., 2009. SaTScan Version 9.1.1: Software for the Spatial and Space-Time Scan Statistics. Available at: http://www.satscan.org.
  26. Kulldorf M, , 1997. A spatial scan statistic. Commun Stat Theory Methods 26: 14811496. [Google Scholar]
  27. Parker DM, Landier J, von Seidlein L, Dondorp A, White L, Hanboonkunupakarn B, Maude RJ, Nosten FH, , 2016. Limitations of malaria reactive case detection in an area of low and unstable transmission on the Myanmar–Thailand border. Malar J 15: 571. [Google Scholar]
  28. Biggs J, 2017. Serology reveals heterogeneity of Plasmodium falciparum transmission in northeastern South Africa: implications for malaria elimination. Malar J 16: 48. [Google Scholar]
  29. Kerkhof K, 2016. Geographical patterns of malaria transmission based on serological markers for falciparum and vivax malaria in Ratanakiri, Cambodia. Malar J 15: 510. [Google Scholar]
  30. White MT, Griffin JT, Akpogheneta O, Conway DJ, Koram KA, Riley EM, Ghani AC, , 2014. Dynamics of the antibody response to Plasmodium falciparum infection in African children. J Infect Dis 210: 11151122. [Google Scholar]
  31. Fowkes FJ, 2012. New insights into acquisition, boosting, and longevity of immunity to malaria in pregnant women. J Infect Dis 206: 16121621. [Google Scholar]
  32. Nagao Y, Kimura-Sato M, Chavalitshewinkoon-Petmitr P, Thongrungkiat S, Wilairatana P, Ishida T, Tan-Ariya P, de Souza JB, Krudsood S, Looareesuwan S, , 2008. Suppression of Plasmodium falciparum by serum collected from a case of Plasmodium vivax infection. Malar J 7: 113. [Google Scholar]
  33. Kwansomboon N, Chaumeau V, Kittiphanakun P, Cerqueira D, Corbel V, Chareonviriyaphap T, , 2017. Vector bionomics and malaria transmission along the Thailand–Myanmar border: a baseline entomological survey. J Vector Ecol 42: 8493. [Google Scholar]
  34. Sriwichai P, Samung Y, Sumruayphol S, Kiattibutr K, Kumpitak C, Payakkapol A, Kaewkungwal J, Yan G, Cui L, Sattabongkot J, , 2016. Natural human Plasmodium infections in major Anopheles mosquitoes in western Thailand. Parasit Vectors 9: 17. [Google Scholar]
  35. Londono-Renteria B, 2015. An. gambiae gSG6-P1 evaluation as a proxy for human-vector contact in the Americas: a pilot study. Parasit Vectors 8: 533. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.18-0081
Loading
/content/journals/10.4269/ajtmh.18-0081
Loading

Data & Media loading...

Supplemental Text and Tables

  • Received : 30 Jan 2018
  • Accepted : 19 Apr 2018
  • Published online : 04 Jun 2018

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error