Volume 98, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



In 2014 in Japan, 162 autochthonous dengue cases were reported for the first time in nearly 70 years. Here, we report the results of the detection and isolation of dengue virus (DENV) from mosquitoes collected in Tokyo Metropolis in 2014 and 2015. The phylogenetic relationship among DENV isolates from mosquitoes and from patients based on both the entire envelope gene and whole coding sequences was evaluated. Herein, 2,298 female and 956 male mosquitoes were collected at six suspected locations of DENV infection in Tokyo Metropolis from August to October in 2014 and grouped into 124 and 35 pools, respectively, for viral genome detection and DENV isolation. Dengue virus RNA was detected using reverse transcription polymerase chain reaction and TaqMan assays from 49 female pools; 16 isolates were obtained using C6/36 and Vero cells. High minimum infection rates (11.2–66.7) persisted until mid-September. All DENV isolates belonged to the genotype I in serotype 1 (DENV-1), and its sequences demonstrated > 99% homology to the sequence of the DENV isolated from a patient in the vicinity of Tokyo Metropolis in 2014. Therefore, was a major DENV vector, and a single DENV-1 strain circulated in Tokyo Metropolis in 2014. Dengue virus was not detected from male mosquitoes in 2014 and wild larvae in April 2015. Thus, the possibility of both vertical transmission and overwintering of DENV was extremely low, even in dengue-epidemic areas. This study reports the first entomological information on a dengue outbreak in a temperate region, where no mosquitoes are distributed.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Ministry of Health, Labour and Welfare, 2014. Domestic Cases of Dengue Fever (First Report). Available at: http://www.mhlw.go.jp/stf/houdou/0000055605.html. Accessed September 10, 2017.
  2. Seki N, 2014. An autochthonous outbreak of dengue type 1 in Tokyo, Japan 2014 [in Japanese with English summary]. Nippon Koshu Eisei Zasshi 62: 238250. [Google Scholar]
  3. Tanikawa T, Yamauchi M, Ishihara S, Tomioka Y, Kimura G, Tanaka K, Suzuki S, Komagata O, Tsuda Y, Sawabe K, , 2015. Operation note on dengue vector control against Aedes albopictus in Chiba City, Japan, where an autochthonous dengue case was confirmed in September 2014 [in Japanese with English summary]. Jap J Sanit Zool 66: 3133. [Google Scholar]
  4. Bhatt S, 2013. The global distribution and burden of dengue. Nature 496: 504507. [Google Scholar]
  5. Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 2016. Local Transmission of Dengue, Japan. Infectious Diseases Weekly Report (IDWR), 2015 and 2016. Available at: http://www.nih.go.jp/niid/ja/data.html. Accessed February 28, 2017.
  6. Hotta S, , 1998. Dengue vector mosquitoes in Japan: the role of Aedes albopictus and Aedes aegypti in the 1942–1944 dengue epidemics of Japanese main islands [in Japanese with English summary]. Jap J Sanit Zool 49: 267274. [Google Scholar]
  7. Schmidt-Chanasit J, 2014. Autochthonous dengue virus infection in Japan imported into Germany, September 2013. Euro Surveill 19: 20681. [Google Scholar]
  8. Miyiagi I, Toma T, Iha S, , 1983. Studies on the mosquitoes in Yaeyama Islands, Japan 9. On the mosquitoes breeding around human dwellings in Ishigakijima and Iriomotejima [in Japanese with English summary]. Jap J Sanit Zool 34: 16. [Google Scholar]
  9. Enserink M, , 2008. Entomology. A mosquito goes global. Science 320: 864866. [Google Scholar]
  10. Tsuda Y, 2006. Dry-ice trap collection of mosquitoes at urban areas surrounding Tokyo, Japan in 2003 and 2004 [in Japanese with English summary]. Jap J Sanit Zool 57: 7582. [Google Scholar]
  11. Arima Y, 2014. Ongoing local transmission of dengue in Japan, August to September 2014. Western Pac Surveill Response J 5: 2729. [Google Scholar]
  12. Kutsuna S, 2014. Autochthonous dengue fever, Tokyo, Japan. Emerg Infect Dis 21: 517520. [Google Scholar]
  13. Tsuda Y, Maekawa Y, Ogawa K, Itokawa K, Komagata O, Sasaki T, Isawa H, Tomita T, Sawabe K, , 2016. Biting density and distribution of Aedes albopictus during the September 2014 outbreak of dengue fever in Yoyogi Park and the vicinity of Tokyo Metropolis, Japan. Jpn J Infect Dis 69: 15. [Google Scholar]
  14. Rosen L, Shroyer DA, Tesh RB, Freier JE, Lien JC, , 1983. Transovarial transmission of dengue viruses by mosquitoes: Aedes albopictus and Aedes aegypti. Am J Trop Med Hyg 32: 11081119. [Google Scholar]
  15. Mitchell CL, Miller BR, , 1990. Vertical transmission of dengue viruses by strains of Aedes albopictus recently introduced into Brazil. J Am Mosq Control Assoc 6: 251253. [Google Scholar]
  16. Buckner EA, Alto BW, Lounibos LP, , 2013. Vertical transmission of Key West dengue-1 virus by Aedes aegypti and Aedes albopictus (Diptera: Culicidae) mosquitoes from Florida. J Med Entomol 50: 12911297. [Google Scholar]
  17. Thenmozhi V, Hiriyan JG, Tewari SC, Philip Samuel P, Paramasivan R, Rajendran R, Mani TR, Tyagi BK, , 2007. Natural vertical transmission of dengue virus in Aedes albopictus (Diptera: Culicidae) in Kerala, a southern Indian state. Jpn J Infect Dis 60: 245249. [Google Scholar]
  18. Cecilio AB, Campanelli ES, Souza KP, Figueiredo LB, Resende MC, , 2009. Natural vertical transmission by Stegomyia albopicta as dengue vector in Brazil. Braz J Biol 69: 123127. [Google Scholar]
  19. Martins VEP, Alencar CH, Kamimura MT, de Carvalho Araújo FM, De Simone SG, Dutra RF, Guedes MIF, , 2012. Occurrence of natural vertical transmission of dengue-2 and dengue-3 viruses in Aedes aegypti and Aedes albopictus in Fortaleza, Ceará, Brazil. PLoS One 7: e41386. [Google Scholar]
  20. Tanaka K, Mizusawa K, Saugstad ES, , 1979. A revision of the adult and larval mosquitoes of Japan (including the Ryukyu Archipelago and the Ogasawara Islands) and Korea (Diptera: Culicidae). Contrib Am Entomol Inst 16: 1987. [Google Scholar]
  21. Morita K, Tanaka M, Igarashi A, , 1991. Rapid identification of dengue virus serotypes by using polymerase chain reaction. J Clin Microbiol 29: 21072110. [Google Scholar]
  22. Ito M, Takasaki T, Yamada K, Nerome R, Tajima S, Kurane I, , 2004. Development and evaluation of fluorogenic reverse transcriptase PCR (TaqMan RT-PCR) assays for dengue virus types 1–4. J Clin Microbiol 42: 59355937. [Google Scholar]
  23. Hoshino K, Isawa H, Tsuda Y, Yano K, Sasaki T, Yuda M, Takasaki T, Kobayashi M, Sawabe K, , 2007. Genetic characterization of a new insect flavivirus isolated from Culex pipiens mosquito in Japan. Virology 359: 405414. [Google Scholar]
  24. Thompson JD, Higgins DG, Gibson TJ, , 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 46734680. [Google Scholar]
  25. Felsenstein J, , 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368376. [Google Scholar]
  26. Kumar S, Stecher G, Tamura K, , 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33: 18701874. [Google Scholar]
  27. Nakayama E, 2016. Two different dengue virus strains in the Japanese epidemics of 2014. Virus Genes 52: 722726. [Google Scholar]
  28. Tajima S, Nakayama E, Kotaki A, Moi ML, Ikeda M, Yagasaki K, Saito Y, Shibasaki K, Saijo M, Takasaki T, , 2017. Whole genome sequencing-based molecular epidemiologic analysis of autochthonous dengue virus type 1 strains circulating in Japan in 2014. Jpn J Infect Dis 70: 4549. [Google Scholar]
  29. Quam MB, Sessions O, Kamaraj US, Rocklöv J, Wilder-Smith A, , 2016. Dissecting Japan’s dengue outbreak in 2014. Am J Trop Med Hyg 94: 409412. [Google Scholar]
  30. Tian H, Sun Z, Faria NR, Yang J, Cazelles B, Huang S, Xu B, Yang Q, Pybus OG, Xu B, , 2017. Increasing airline travel may facilitate co-circulation of multiple dengue virus serotypes in Asia. PLoS Negl Trop Dis 11: e0005694. [Google Scholar]
  31. Sukehiro N, Kida N, Umezaki M, Murakami T, Arai N, Jinnai T, Inagaki S, Tsuchida H, Murayama H, Tsuda Y, , 2013. First report on invasion of yellow fever mosquito, Aedes aegypti, at Narita International Airport, Japan in August 2012. Jpn J Infect Dis 66: 189194. [Google Scholar]
  32. Chung YK, Pang FY, , 2002. Dengue virus infection rate in field populations of female Aedes aegypti and Aedes albopictus in Singapore. Trop Med Int Health 7: 322330. [Google Scholar]
  33. Sasaki TT, Higa Y, Bertuso AG, Isawa H, Takasaki T, Minakawa N, Sawabe K, , 2015. Susceptibility of indigenous and transplanted mosquito spp. to dengue virus in Japan. Jpn J Infect Dis 68: 425427. [Google Scholar]
  34. Adalja AA, Sell TK, Bouri N, Franco C, , 2012. Lessons learned during dengue outbreaks in the United States, 2001–2011. Emerg Infect Dis 18: 608614. [Google Scholar]
  35. La Ruche G, 2010. First two autochthonous dengue virus infections in metropolitan France, September 2010. Euro Surveill 15: 19676. [Google Scholar]
  36. Marchand E, 2013. Autochthonous case of dengue in France, October 2013. Euro Surveill 18: 20661. [Google Scholar]
  37. Hsu JC, Hsieh CL, Lu CY, , 2017. Trend and geographic analysis of the prevalence of dengue in Taiwan, 2010–2015. Int J Infect Dis 54: 4349. [Google Scholar]
  38. Effler PV, Hawaii Dengue Outbreak Investigation Team , 2005. Dengue fever, Hawaii, 2001–2002. Emerg Infect Dis 11: 742. [Google Scholar]
  39. Holstein M, , 1967. Dynamics of Aedes aegypti distribution, density and seasonal prevalence in the Mediterranean area. Bull World Health Organ 36: 541. [Google Scholar]
  40. Schaffner F, Mathis A, , 2014. Dengue and dengue vectors in the WHO European region: past, present, and scenarios for the future. Lancet Infect Dis 14: 12711280. [Google Scholar]
  41. Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 2015. Dengue fever and dengue hemorrhagic fever, 2011–2014. IASR 36: 3335. [Google Scholar]
  42. Duong V, Lambrechts L, Paul RE, Ly S, Long KC, Huy R, Tarantola A, Scott TW, Sakuntabhai A, Buchy P, , 2015. A symptomatic humans transmit dengue virus to mosquitoes. Proc Natl Acad Sci USA 112: 1468814693. [Google Scholar]
  43. Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 2015. Results from active surveillance of autochthonous dengue fever cases in Japan, 2014 [in Japanese]. IASR 36: 137140. [Google Scholar]
  44. Adams B, Boots M, , 2010. How important is vertical transmission in mosquitoes for the persistence of dengue? Insights from a mathematical model. Epidemics 2: 110. [Google Scholar]
  45. Grubaugh ND, Weger-Lucarelli J, Murrieta RA, Fauver JR, Garcia-Luna SM, Prasad AN, Black WC, 4th Ebel GD, , 2016. Genetic drift during systemic arbovirus infection of mosquito vectors leads to decreased relative fitness during host switching. Cell Host Microbe 19: 481492. [Google Scholar]
  46. Grubaugh ND, Fauver JR, Rückert C, Weger-Lucarelli J, Garcia-Luna S, Murrieta RA, Gendernalik A, Smith DR, Brackney DE, Ebel GD, , 2017. Mosquitoes transmit unique West Nile virus populations during each feeding episode. Cell Rep 19: 709718. [Google Scholar]
  47. Villordo SM, Carballeda JM, Filomatori CV, Gamarnik AV, , 2016. RNA structure duplications and flavivirus host adaptation. Trends Microbiol 24: 270283. [Google Scholar]
  48. Vazeille M, 2007. Two chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus. PLoS One 2: e1168. [Google Scholar]
  49. Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S, , 2007. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog 3: e201. [Google Scholar]
  50. Rezza G, CHIKV study group , 2007. Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370: 18401846. [Google Scholar]
  51. Pagès F, Peyrefitte CN, Mve MT, Jarjaval F, Brisse S, Iteman I, Gravier P, Tolou H, Nkoghe D, Grandadam M, , 2009. Aedes albopictus mosquito: the main vector of the 2007 chikungunya outbreak in Gabon. PLoS One 4: e4691. [Google Scholar]
  52. Peyrefitte CN, 2007. Chikungunya virus, Cameroon, 2006. Emerg Infect Dis 13: 768771. [Google Scholar]
  53. de Lamballerie X, Leroy E, Charrel RN, Ttsetsarkin K, Higgs S, Gould EA, , 2008. Chikungunya virus adapts to tiger mosquito via evolutionary convergence: a sign of things to come? Virol J 5: 33. [Google Scholar]

Data & Media loading...

Supplemental Table

  • Received : 07 Dec 2017
  • Accepted : 12 Feb 2018
  • Published online : 19 Mar 2018

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error