Volume 98, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Cerebral malaria (CM) remains an important cause of morbidity and mortality. Risk for developing CM partially depends on host genetic factors, including variants encoded in the type I interferon (IFN) receptor 1 (IFNAR1). Type I IFNs bind to IFNAR1 resulting in increased expression of IFN responsive genes, which modulate innate and adaptive immune responses. To comprehensively study IFNAR1 genetic variant associations in Malawians with CM or uncomplicated malaria, we used a tag single nucleotide polymorphism approach, based on the HapMap Yoruba in Ibadan, Nigeria, population database. We identified three novel (rs914142, rs12626750, and rs1041867) and one previously published (Chr21:34696785 [C > G]) IFNAR1 variants to be associated with CM. Some of these variants are in gene regulatory regions. Chr21:34696785 (C > G) is in a region encoding histone modifications and transcription factor–binding sites, which suggests gene regulatory activity. Rs12626750 is predicted to bind embryonic lethal abnormal vision system-like RNA-binding protein 1, a RNA-binding protein which can increase the type I IFN response. Furthermore, we examined these variants in an expression quantitative trait loci database and found that a protective variant, rs914142, is associated with lower expression of IFNAR1, whereas the CM-associated variant rs12626750 was associated with increased IFNAR1 expression, suggesting that activation of the type I IFN pathway may contribute to pathogenesis of CM. Future functional studies of IFNAR1 variants are now needed to clarify the role of this pathway in severe malarial diseases.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. World Health Organization, 2017. World Malaria Report 2017, Geneva, Switzerland: World Health Organization.
  2. World Health Organization, 2015. Guidelines for the Treatment of Malaria. 3rd edition. Geneva, Switzerland: World Health Organization.
  3. Kwiatkowski DP, , 2005. How malaria has affected the human genome and what human genetics can teach us about malaria. Am J Hum Genet 77: 171192. [Google Scholar]
  4. Aucan C, Walley AJ, Hennig BJ, Fitness J, Frodsham A, Zhang L, Kwiatkowski D, Hill AV, , 2003. Interferon-alpha receptor-1 (IFNAR1) variants are associated with protection against cerebral malaria in the Gambia. Genes Immun 4: 275282. [Google Scholar]
  5. Khor CC, 2007. Positive replication and linkage disequilibrium mapping of the chromosome 21q22.1 malaria susceptibility locus. Genes Immun 8: 570576. [Google Scholar]
  6. Ball EA, Sambo MR, Martins M, Trovoada MJ, Benchimol C, Costa J, Antunes Goncalves L, Coutinho A, Penha-Goncalves C, , 2013. IFNAR1 controls progression to cerebral malaria in children and CD8+ T cell brain pathology in Plasmodium berghei-infected mice. J Immunol 190: 51185127. [Google Scholar]
  7. Stryker GA, Nickell SP, , 1995. Trypanosoma cruzi: exposure of murine cells to live parasites in vitro leads to enhanced surface class I MHC expression which is type I interferon-dependent. Exp Parasitol 81: 564573. [Google Scholar]
  8. Stetson DB, Medzhitov R, , 2006. Type I interferons in host defense. Immunity 25: 373381. [Google Scholar]
  9. Berry MP, 2010. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466: 973977. [Google Scholar]
  10. Stifter SA, Feng CG, , 2015. Interfering with immunity: detrimental role of type I IFNs during infection. J Immunol 194: 24552465. [Google Scholar]
  11. Pichyangkul S, 2004. Malaria blood stage parasites activate human plasmacytoid dendritic cells and murine dendritic cells through a toll-like receptor 9-dependent pathway. J Immunol 172: 49264933. [Google Scholar]
  12. Sharma S, 2011. Innate immune recognition of an AT-rich stem-loop DNA motif in the Plasmodium falciparum genome. Immunity 35: 194207. [Google Scholar]
  13. Krupka M, Seydel K, Feintuch CM, Yee K, Kim R, Lin CY, Calder RB, Petersen C, Taylor T, Daily J, , 2012. Mild Plasmodium falciparum malaria following an episode of severe malaria is associated with induction of the interferon pathway in Malawian children. Infect Immun 80: 11501155. [Google Scholar]
  14. Vigario AM, 2007. Recombinant human IFN-alpha inhibits cerebral malaria and reduces parasite burden in mice. J Immunol 178: 64166425. [Google Scholar]
  15. Morrell CN, Srivastava K, Swaim A, Lee MT, Chen J, Nagineni C, Hooks JJ, Detrick B, , 2011. Beta interferon suppresses the development of experimental cerebral malaria. Infect Immun 79: 17501758. [Google Scholar]
  16. Palomo J, 2013. Type I interferons contribute to experimental cerebral malaria development in response to sporozoite or blood-stage Plasmodium berghei ANKA. Eur J Immunol 43: 26832695. [Google Scholar]
  17. Haque A, 2011. Type I interferons suppress CD4+ T-cell-dependent parasite control during blood-stage Plasmodium infection. Eur J Immunol 41: 26882698. [Google Scholar]
  18. Spaulding E, Fooksman D, Moore JM, Saidi A, Feintuch CM, Reizis B, Chorro L, Daily J, Lauvau G, , 2016. STING-licensed macrophages prime type I IFN production by plasmacytoid dendritic cells in the bone marrow during severe Plasmodium yoelii malaria. PLoS Pathog 12: e1005975. [Google Scholar]
  19. Zander RA, Guthmiller JJ, Graham AC, Pope RL, Burke BE, Carr DJ, Butler NS, , 2016. Type I interferons induce T regulatory 1 responses and restrict humoral immunity during experimental malaria. PLoS Pathog 12: e1005945. [Google Scholar]
  20. Mooney JP, Wassmer SC, Hafalla JC, , 2017. Type I interferon in malaria: a balancing act. Trends Parasitol 33: 257260. [Google Scholar]
  21. Barrera V, 2015. Severity of retinopathy parallels the degree of parasite sequestration in the eyes and brains of Malawian children with fatal cerebral malaria. J Infect Dis 211: 19771986. [Google Scholar]
  22. World Health Organization, 2015. Guidelines for the Treatment of Malaria, 3rd edition. Geneva, Switzerland: WHO.
  23. Taylor TE, Fu WJ, Carr RA, Whitten RO, Mueller JS, Fosiko NG, Lewallen S, Liomba NG, Molyneux ME, , 2004. Differentiating the pathologies of cerebral malaria by postmortem parasite counts. Nat Med 10: 143145. [Google Scholar]
  24. Mathanga DP, Walker ED, Wilson ML, Ali D, Taylor TE, Laufer MK, , 2012. Malaria control in Malawi: current status and directions for the future. Acta Trop 121: 212217. [Google Scholar]
  25. International HapMap Consortium, 2003. The international HapMap project. Nature 426: 789796. [Google Scholar]
  26. Barrett JC, Fry B, Maller J, Daly MJ, , 2005. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21: 263265. [Google Scholar]
  27. The 1000 Genomes Project Consortium Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR, ; , 2015. A global reference for human genetic variation. Nature 526: 6874. [Google Scholar]
  28. Exome Variant Server, 2011. NHLBI Exome Sequencing Project (ESP). Available at: http://evs.gs.washington.edu/EVS/. Accessed December 15, 2011.
  29. Namipashaki A, Razaghi-Moghadam Z, Ansari-Pour N, , 2015. The essentiality of reporting Hardy-Weinberg equilibrium calculations in population-based genetic association studies. Cell J 17: 187192. [Google Scholar]
  30. Purcell S, 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81: 559575. [Google Scholar]
  31. Benjamini Y, Hochberg Y, , 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57: 289300. [Google Scholar]
  32. Ward LD, Kellis M, , 2012. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res 40: D930D934. [Google Scholar]
  33. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D, , 2002. The human genome browser at UCSC. Genome Res 12: 9961006. [Google Scholar]
  34. Boyle AP, 2012. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res 22: 17901797. [Google Scholar]
  35. Aponte JJ, Menendez C, Schellenberg D, Kahigwa E, Mshinda H, Vountasou P, Tanner M, Alonso PL, , 2007. Age interactions in the development of naturally acquired immunity to Plasmodium falciparum and its clinical presentation. PLoS Med 4: e242. [Google Scholar]
  36. Westra HJ, 2013. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet 45: 12381243. [Google Scholar]
  37. Rowell J, Koitabashi N, Kass DA, Barth AS, , 2014. Dynamic gene expression patterns in animal models of early and late heart failure reveal biphasic-bidirectional transcriptional activation of signaling pathways. Physiol Genomics 46: 779787. [Google Scholar]
  38. O’Reilly D, Quinn CM, El-Shanawany T, Gordon S, Greaves DR, , 2003. Multiple Ets factors and interferon regulatory factor-4 modulate CD68 expression in a cell type-specific manner. J Biol Chem 278: 2190921919. [Google Scholar]
  39. Hikami K, 2011. Association of a functional polymorphism in the 3′-untranslated region of SPI1 with systemic lupus erythematosus. Arthritis Rheum 63: 755763. [Google Scholar]
  40. Kubosaki A, 2010. The combination of gene perturbation assay and ChIP-chip reveals functional direct target genes for IRF8 in THP-1 cells. Mol Immunol 47: 22952302. [Google Scholar]
  41. Pruitt KD, 2014. RefSeq: an update on mammalian reference sequences. Nucleic Acids Res 42: D756D763. [Google Scholar]
  42. Herdy B, 2015. The RNA-binding protein HuR/ELAVL1 regulates IFN-β mRNA abundance and the type I IFN response. Eur J Immunol 45: 15001511. [Google Scholar]
  43. Takeuchi O, , 2015. HuR keeps interferon-β mRNA stable. Eur J Immunol 45: 12961299. [Google Scholar]
  44. de Weerd NA, Samarajiwa SA, Hertzog PJ, , 2007. Type I interferon receptors: biochemistry and biological functions. J Biol Chem 282: 2005320057. [Google Scholar]
  45. Idro R, Jenkins NE, Newton CR, , 2005. Pathogenesis, clinical features, and neurological outcome of cerebral malaria. Lancet Neurol 4: 827840. [Google Scholar]
  46. Tishkoff SA, 2009. The genetic structure and history of Africans and African Americans. Science 324: 10351044. [Google Scholar]
  47. Xing J, Witherspoon DJ, Watkins WS, Zhang Y, Tolpinrud W, Jorde LB, , 2008. HapMap tagSNP transferability in multiple populations: general guidelines. Genomics 92: 4151. [Google Scholar]

Data & Media loading...

Supplemental Figure and Table

  • Received : 15 Nov 2017
  • Accepted : 23 Feb 2018
  • Published online : 09 Apr 2018

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error