1921
Volume 99, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

In the Americas, 8 million people are infected with Chagas disease, and an additional 90 million people are at risk for infection. Little is known about the role bats play in the sylvatic transmission cycle of , the parasite causing Chagas disease. Here, we captured bats in the villages of Palmiche, Pachacutec, Nuevo San Martin, and Mayuriaga located in the Datem del Marañon Province in Loreto, Peru. Venous blood samples were collected by cardiac puncture or from the upper extremities, and trypanosomatids were identified by microscopy and molecularly. We collected blood samples from 121 bats on filter paper for molecular studies and 111 slides for microscopic examination of thin and thick blood smears from 16 different bat species. The prevalence of trypanosomatids in all bats species was 34.7% (42/121) and the prevalence of 4.1% (5/121). In hematophagous bat species, the prevalence of trypanosomatids and was 36.9% (27/73) and 2.7% (2/73), respectively. In non-hematophagous bats, the prevalences of trypanosomatids and were 31.2% (15/48) and 6.2% (3/48), respectively. Also, we confirm the presence of in salivary glands of hematophagous bats . These results suggest a sylvatic cycle of trypanosomatid transmission in which bats may harbor infectious parasites that could be transmitted to humans via hematophagous bat bites or salivary contamination by non-hematophagous bats of vegetables consumed by humans.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.17-0816
2018-07-16
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/14761645/99/3/tpmd170816.html?itemId=/content/journals/10.4269/ajtmh.17-0816&mimeType=html&fmt=ahah

References

  1. Hotez PJ, Bottazzi ME, Franco-Paredes C, Ault SK, Periago MR, , 2008. The neglected tropical diseases of Latin America and the Caribbean: a review of disease burden and distribution and a roadmap for control and elimination. PLoS Negl Trop Dis 2: e300. [Google Scholar]
  2. De Lana M, Menezes Machado E, , 2010. Biology of Trypanosoma cruzi and Biological Diversity. American Trypanosomiasis, Chagas Disease: One Hundred Years of Research. Amsterdam, The Netherlands: Elsevier, 339–363.
  3. Hamilton PB, Teixeira MM, Stevens JR, , 2012. The evolution of Trypanosoma cruzi: the ‘bat seeding’hypothesis. Trends Parasitol 28: 136141. [Google Scholar]
  4. Abad-Franch F, 2015. On palms, bugs, and Chagas disease in the Americas. Acta Trop 151: 126141. [Google Scholar]
  5. Burkholder J, Allison T, Kelly V, , 1980. Trypanosoma cruzi (Chagas) (Protozoa: Kinetoplastida) in invertebrate, reservoir, and human hosts of the lower Rio Grande valley of Texas. J Parasitol 66: 305311. [Google Scholar]
  6. Crompton DWT, Daumerie D, Peters P, Savioli L, Marinelli A, Marinelli GJA, March GJ, Heymann D, March GJ, Marinelli AD, , 2010. Working to Overcome the Global Impact of Neglected Tropical Diseases: First WHO Report on Neglected Tropical Diseases. First WHO report on neglected tropical diseases: Organización Mundial de la Salud. Geneva, Switzerland: World Health Organization, 75 pp.
  7. Luna EJ, 2016. Prevalence of Trypanosoma cruzi infection among Bolivian immigrants in the city of São Paulo, Brazil. Mem Inst Oswaldo Cruz 112: 7074. [Google Scholar]
  8. Schofield CJ, Jannin J, Salvatella R, , 2006. The future of Chagas disease control. Trends Parasitol 22: 583588. [Google Scholar]
  9. Barnabe C, Brisse S, Tibayrenc M, , 2003. Phylogenetic diversity of bat trypanosomes of subgenus Schizotrypanum based on multilocus enzyme electrophoresis, random amplified polymorphic DNA, and cytochrome b nucleotide sequence analyses. Infect Genet Evol 2: 201208. [Google Scholar]
  10. Zingales B, 2012. The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infect Genet Evol 12: 240253. [Google Scholar]
  11. Lima L, Espinosa-Álvarez O, Ortiz PA, Trejo-Varón JA, Carranza JC, Pinto CM, Serrano MG, Buck GA, Camargo EP, Teixeira MM, , 2015. Genetic diversity of Trypanosoma cruzi in bats, and multilocus phylogenetic and phylogeographical analyses supporting Tcbat as an independent DTU (discrete typing unit). Acta Trop 151: 166177. [Google Scholar]
  12. Cottontail VM, Kalko EK, Cottontail I, Wellinghausen N, Tschapka M, Perkins SL, Pinto CM, , 2014. High local diversity of Trypanosoma in a common bat species, and implications for the biogeography and taxonomy of the T. cruzi clade. PLoS One 9: e108603. [Google Scholar]
  13. Ramírez JD, Tapia-Calle G, Muñoz-Cruz G, Poveda C, Rendón LM, Hincapié E, Guhl F, , 2014. Trypanosome species in neo-tropical bats: biological, evolutionary and epidemiological implications. Infect Genet Evol 22: 250256. [Google Scholar]
  14. Vargas F, Córdova Paz Soldán O, Marín C, Jose Rosales M, Sánchez-Gutierrez R, Sánchez-Moreno M, , 2007. Epidemiology of American trypanosomiasis in northern Peru. Ann Trop Med Parasitol 101: 643648. [Google Scholar]
  15. Náquira C, Cabrera R, , 2009. Breve reseña histórica de la enfermedad de Chagas, a cien años de su descubrimiento y situación actual en el Perú. Rev Peru Med Exp Salud Publica 26: 494504. [Google Scholar]
  16. Herrer A, , 1960. Distribución geografica de la enfermedad de Chagas y de sus vectores en el Peril. Bol Oficina Sanit Panam 49: 572. [Google Scholar]
  17. Guhl F, , 2009. Enfermedad de Chagas: realidad y perspectivas. Rev Biomed 20: 228234. [Google Scholar]
  18. Ceballos LAG, , 2010. Ciclo Silvestre de Transmision de Trypanosoma cruzi en el Noroeste de Argentina The Sylvatic Transmission Cycle of Trypanosoma cruzi in Northwest Argentina/Sylvatic Transmission Cycle of Trypanosoma cruzi in Northwest Argentina. e-libro, Corp., Biblioteca Digital FCEN-UBA (Tesis Doctoral).
  19. Nancy C, Solís H, Pancorbo F, , 2012. Reservorios silvestres de Trypanosoma cruzi: evaluación preliminar en la amazonia peruana. The Biologist 10: 59. [Google Scholar]
  20. Solís HM, Carlos N, , 2016. Reservorios silvestres de Trypanosoma cruzi en cuatro localidades de las regiones Amazonas y Loreto. Theorēma (Lima, Segunda época, En línea) 2: 6373. [Google Scholar]
  21. Souto RP, Zingales B, , 1993. Sensitive detection and strain classification of Trypanosoma cruzi by amplification of a ribosomal RNA sequence. Mol Biochem Parasitol 62: 4552. [Google Scholar]
  22. Hwang WS, Zhang G, Maslov D, Weirauch C, , 2010. Infection rates of Triatoma protracta (Uhler) with Trypanosoma cruzi in southern California and molecular identification of trypanosomes. Am J Trop Med Hyg 83: 10201022. [Google Scholar]
  23. Gilbert AT, Petersen BW, Recuenco S, Niezgoda M, Gómez J, Laguna-Torres VA, Rupprecht C, , 2012. Evidence of rabies virus exposure among humans in the Peruvian Amazon. Am J Trop Med Hyg 87: 206215. [Google Scholar]
  24. Desquesnes M, Holzmuller P, Lai D-H, Dargantes A, Lun Z-R, Jittaplapong S, , 2013. Trypanosoma evansi and surra: a review and perspectives on origin, history, distribution, taxonomy, morphology, hosts, and pathogenic effects. Biomed Res Int 2013: 194176. [Google Scholar]
  25. Cramer MJ, Willig MR, Jones C, , 2001. Trachops cirrhosus. Mamm Species 656: 16. [Google Scholar]
  26. Argibay H, Orozco M, Cardinal M, Rinas M, Arnaiz M, Mena SC, Gürtler R, , 2016. First finding of Trypanosoma cruzi II in vampire bats from a district free of domestic vector-borne transmission in northeastern Argentina. Parasitology 143: 111. [Google Scholar]
  27. García L, Ortiz S, Osorio G, Torrico MC, Torrico F, Solari A, , 2012. Phylogenetic analysis of Bolivian bat trypanosomes of the subgenus Schizotrypanum based on cytochrome B sequence and minicircle analyses. PLoS One 7: e36578. [Google Scholar]
  28. da Silva Valente SA, da Costa Valente V, das Neves Pinto AY, de Jesus Barbosa César M, dos Santos MP, Miranda COS, Cuervo P, Fernandes O, , 2009. Analysis of an acute Chagas disease outbreak in the Brazilian Amazon: human cases, triatomines, reservoir mammals and parasites. Trans R Soc Trop Med Hyg 103: 291297. [Google Scholar]
  29. Steindel M, Pacheco LK, Scholl D, Soares M, de Moraes MH, Eger I, Kosmann C, Sincero TCM, Stoco PH, Murta SMF, , 2008. Characterization of Trypanosoma cruzi isolated from humans, vectors, and animal reservoirs following an outbreak of acute human Chagas disease in Santa Catarina State, Brazil. Diagn Microbiol Infect Dis 60: 2532. [Google Scholar]
  30. Rueda K, Trujillo JE, Carranza JC, Vallejo GA, , 2014. Transmisión oral de Trypanosoma cruzi: una nueva situación epidemiológica de la enfermedad de Chagas en Colombia y otros países suramericanos. Biomedica 34: 631641. [Google Scholar]
  31. Ferrer A, Lew D, Lasso C, Carlos A, , Nota sobre depredación por Trachops cirrhosus Spix, 1823. (Chiroptera, Phyllostomidae) en Venezuela. Mem Soc Cienc Nat La Salle 58: 145147. [Google Scholar]
  32. Thomas ME, Rasweiler I, John J, D’Alessandro A, , 2007. Experimental transmission of the parasitic flagellates Trypanosoma cruzi and Trypanosoma rangeli between triatomine bugs or mice and captive neotropical bats. Mem Inst Oswaldo Cruz 102: 559565. [Google Scholar]
  33. Añez N, Crisante G, Soriano PJ, , 2009. Trypanosoma cruzi congenital transmission in wild bats. Acta Trop 109: 7880. [Google Scholar]
  34. Streicker DG, Winternitz JC, Satterfield DA, Condori-Condori RE, Broos A, Tello C, Recuenco S, Velasco-Villa A, Altizer S, Valderrama W, , 2016. Host–pathogen evolutionary signatures reveal dynamics and future invasions of vampire bat rabies. Proc Natl Acad Sci U S A 113: 1092610931. [Google Scholar]
  35. de Sousa MA, , 2014. On opportunist infections by Trypanosoma lewisi in humans and its differential diagnosis from T. cruzi and T. rangeli. Parasitol Res 113: 44714475. [Google Scholar]
  36. Stevens J, Teixeira M, Bingle L, Gibson W, , 1999. The taxonomic position and evolutionary relationships of Trypanosoma rangeli. Int J Parasitol 29: 749757. [Google Scholar]
  37. Cabrera R, Vega S, Valderrama Y, Cabanillas K, Fernandez C, Rodriguez O, Del Aguila C, Hernandez J, Mendoza L, Ramon Meza J, , 2013. New focus of active transmission of Chagas disease in indigenous populations in the Peruvian Amazon basin. Rev Soc Bras Med Trop 46: 367372. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.17-0816
Loading
/content/journals/10.4269/ajtmh.17-0816
Loading

Data & Media loading...

  • Received : 19 Oct 2017
  • Accepted : 02 May 2018
  • Published online : 16 Jul 2018

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error