1921
Volume 100, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Triatomines are vectors of , the etiologic agent of Chagas disease. Although the evolutionary process in triatomine is considered as disruptive, cryptic speciation and homoploid hybridization also are possible modes of speciation. Several analyses suggested as a product of hybridization between and . Thus, we analyzed genetic characteristics (chromosomal analysis, genetic distance for the mitochondrial ND1 gene, and the pattern of bands of internal transcribed spacer [ITS]-1) of these species, with emphasis on the phenomenon of homoploid hybridization. All species showed the same cytogenetic characteristics, low genetic distance for ND1 gene, and the same pattern of ITS-1 bands. We consider that these genetic characteristics, together with the large chromatic polymorphism and the viability of experimental crosses possibly are due to the processes of introgression that these species suffered during the process of homoploid hybridization.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.17-0813
2019-02-18
2020-09-19
Loading full text...

Full text loading...

/deliver/fulltext/14761645/100/4/tpmd170813.html?itemId=/content/journals/10.4269/ajtmh.17-0813&mimeType=html&fmt=ahah

References

  1. World Health Organization, 2017. Chagas Disease (American trypanosomiasis). Available at: http://www.who.int/mediacentre/factsheets/fs340/en/. Accessed September 24, 2017.
  2. Gascon J, Bern C, Pinazo MJ, 2010. Chagas disease in Spain, the United States and other non-endemic countries. Acta Trop 115: 2227.
    [Google Scholar]
  3. Cucunubá ZM, Okuwoga O, Basáñez MG, Nouvellet P, 2016. Increased mortality attributed to Chagas disease: a systematic review and meta-analysis. Parasit Vectors 9: 42.
    [Google Scholar]
  4. Oliveira J, Alevi KCC, 2017. Taxonomic status of Panstrongylus herreri Wygodzinsky, 1948 and the number of Chagas disease vectors. Rev Soc Bras Med Trop 50: 434435.
    [Google Scholar]
  5. Rosa JA, Justino HHG, Nascimento JD, Mendonça VJ, Rocha CS, Carvalho DB, Falcone R, Azeredo-Oliveira MTV, Alevi KCC, Oliveira J, 2017. A new species of Rhodnius from Brazil (Hemiptera, Reduviidae, Triatominae). ZooKeys 675: 125.
    [Google Scholar]
  6. Dujardin JP, Costa J, Bustamante D, Jaramillo N, Catala S, 2009. Deciphering morphology in Triatominae: the evolutionary signals. Acta Trop 110: 101111.
    [Google Scholar]
  7. Panzera F, Pita S, Nattero J, Panzera Y, Galvão C, Chavez T, Rojas de Arias A, Cardozo Téllez L, Noireau F, 2015. Cryptic speciation in the Triatoma sordida subcomplex (Hemiptera, Reduviidae) revealed by chromosomal markers. Parasit Vectors 8: 495.
    [Google Scholar]
  8. Panzera F et al., 2006. Chromosomal variation and genome size support existence of cryptic species of Triatoma dimidiata with different epidemiological importance as Chagas disease vectors. Trop Med Int Health 11: 10921103.
    [Google Scholar]
  9. Costa J, Peterson AT, Dujardin JP, 2009. Morphological, evidence suggests homoploid hybridization as a possible mode of speciation in the Triatominae (Hemiptera, Heteroptera, Reduviidae). Infect Genet Evol 9: 263270.
    [Google Scholar]
  10. Costa J, Peterson AT, Beard CB, 2002. Ecological, niche modeling and differentiation of populations of Triatoma brasiliensis Neiva, 1911, the most important Chagas disease vector in northeastern Brazil. Am J Trop Med Hyg 67: 516520.
    [Google Scholar]
  11. Costa J, Freitas-Sibajev MGR, Marchon-Silva V, Pires MQ, Pacheco RS, 1997. Isoenzymes detect variation in populations of Triatoma brasiliensis (Hemiptera: Reduviidae: Triatominae). Mem Inst Oswaldo Cruz 92: 459464.
    [Google Scholar]
  12. Costa J, Almeida CE, Dujardin JP, Beard CB, 2003. Crossing experiments detect genetic incompatibility among populations of Triatoma brasiliensis Neiva, 1911 (Heteroptera, Reduviidae, Triatominae). Mem Inst Oswaldo Cruz 98: 637639.
    [Google Scholar]
  13. Monteiro FA, Donnelly MJ, Beard CB, Costa J, 2004. Nested clade and phylogeographic analyses of the Chagas disease vector Triatoma brasiliensis in northeast Brazil. Mol Phylogenet Evol 32: 4656.
    [Google Scholar]
  14. Costa J et al., 2016. Phenotypic variability confirmed by nuclear ribosomal DNA suggests a possible natural hybrid zone of Triatoma brasiliensis species complex. Infect Genet Evol 37: 7787.
    [Google Scholar]
  15. Oliveira J et al., 2017. Combined phylogenetic and morphometric information to delimit and unify the Triatoma brasiliensis species complex and the Brasiliensis subcomplex. Acta Trop 170: 140148.
    [Google Scholar]
  16. Bardella VB, Gaeta ML, Vanzela ALL, Azeredo-Oliveira MTV, 2010. Chromosomal location of heterochromatin and 45S rDNA sites in four South American triatomines (Heteroptera: Reduviidae). Comp Cytog 4: 141149.
    [Google Scholar]
  17. Dotson EM, Beard CB, 2001. Sequence and organization of the mitochondrial genome of the Chagas disease vector, Triatoma dimidiata. Insect Mol Biol 10: 205215.
    [Google Scholar]
  18. Tartarotti E, Ceron CR, 2005. Ribosomal DNA ITS-1 intergenic spacer polymorphism in triatomines (Triatominae, Heteroptera). Biochem Genet 43: 365373.
    [Google Scholar]
  19. Panzera F, Pérez R, Nicolini P, Hornos P, Costa J, Borges E, Diotaiuti L, Scholfield J, 2000. Chromosome homogeneity in populations of Triatoma brasiliensis Neiva 1911 (Hemiptera–Reduviidae–Triatominae). Cad Saude Publica 16: 8388.
    [Google Scholar]
  20. Bardella VB, Pita S, Vanzela ALL, Galvão C, Panzera F, 2016. Heterochromatin base pair composition and diversification in holocentric chromosomes of kissing bugs (Hemiptera, Reduviidae). Mem Inst Oswaldo Cruz 111: 614624.
    [Google Scholar]
  21. Mas-Coma S, Bargues MD, 2009. Populations, hybrids and the systematic concepts of species and subspecies in Chagas disease triatomine vectors inferred from nuclear ribosomal and mitochondrial DNA. Acta Trop 110: 112136.
    [Google Scholar]
  22. Marcilla A, Bargues MD, Ramsey JM, Magallón-Gastélum E, Salazar-Schettino PM, Abad-Franch F, Dujardin JP, Schofield CJ, Mas-Coma S, 2001. The ITS-2 of the nuclear rDNA as a molecular marker for populations, species, and phylogenetic relationships in Triatominae (Hemiptera: Reduviidae), vectors of Chagas disease. Mol Phylogenet Evol 18: 136142.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.17-0813
Loading
/content/journals/10.4269/ajtmh.17-0813
Loading

Data & Media loading...

  • Received : 17 Oct 2017
  • Accepted : 07 Apr 2018
  • Published online : 18 Feb 2019
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error