1921
Volume 98, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Defining the optimal diagnostic tools for evaluating onchocerciasis elimination efforts in areas co-endemic for other filarial nematodes is imperative. This study compared three published polymerase chain reaction (PCR) methods: the –specific qPCR-O150, the pan-filarial qPCR melt curve analysis (MCA), and the O150-PCR enzyme-linked immunosorbent assay (ELISA) currently used for vector surveillance in skin snip biopsies (skin snips) collected from the Democratic Republic of the Congo. The pan-filarial qPCR-MCA was compared with species-specific qPCRs for and . Among the 471 skin snips, 47.5%, 43.5%, and 27.0% were positive by qPCR-O150, qPCR-MCA, and O150-PCR ELISA, respectively. Using qPCR-O150 as the comparator, the sensitivity and specificity of qPCR-MCA were 89.3% and 98.0%, respectively, whereas for O150-PCR ELISA, they were 56.7% and 100%, respectively. Although qPCR-MCA identified the presence of and spp. in skin snips, species-specific qPCRs had greater sensitivity and were needed to identify . Most of the qPCR-MCA misclassifications occurred in mixed infections. The reduced sensitivity of O150-PCR ELISA was associated with lower microfilaria burden and with lower amounts of DNA. Although qPCR-MCA identified most of the –positive skin snips, it is not sufficiently robust to be used for stop-mass drug administration (MDA) evaluations in areas co-endemic for other filariae. Because O150-PCR ELISA missed 43.3% of qPCR-O150–positive skin snips, the qPCR-O150 assay is more appropriate for evaluating skin snips of OV-16 + children in stop-MDA assessments. Although improving the sensitivity of the O150-PCR ELISA as an alternative to qPCR might be possible, qPCR-O150 offers distinct advantages aside from increased sensitivity.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.17-0809
2018-05-09
2019-06-16
Loading full text...

Full text loading...

/deliver/fulltext/14761645/98/5/tpmd170809.html?itemId=/content/journals/10.4269/ajtmh.17-0809&mimeType=html&fmt=ahah

References

  1. WHO, 2016. Progress report on the elimination of human onchocerciasis, 2015–2016. Wkly Epidemiol Rec 91: 505514. [Google Scholar]
  2. WHO, 2011. African programme for onchocerciasis control: meeting of National Task Forces, September 2011. Wkly Epidemiol Rec 86: 541549. [Google Scholar]
  3. Cupp EW, Sauerbrey M, Richards F, , 2011. Elimination of human onchocerciasis: history of progress and current feasibility using ivermectin (Mectizan((R))) monotherapy. Acta Trop 120 (Suppl 1): S100S108. [Google Scholar]
  4. Roberts JM, Neumann E, Gockel CW, Highton RB, , 1967. Onchocerciasis in Kenya 9, 11 and 18 years after elimination of the vector. Bull World Health Organ 37: 195212. [Google Scholar]
  5. Turner HC, Walker M, Churcher TS, Basanez MG, , 2014. Modelling the impact of ivermectin on River Blindness and its burden of morbidity and mortality in African Savannah: EpiOncho projections. Parasit Vectors 7: 241. [Google Scholar]
  6. Turner HC, Walker M, Churcher TS, Osei-Atweneboana MY, Biritwum NK, Hopkins A, Prichard RK, Basanez MG, , 2014. Reaching the london declaration on neglected tropical diseases goals for onchocerciasis: an economic evaluation of increasing the frequency of ivermectin treatment in Africa. Clin Infect Dis 59: 923932. [Google Scholar]
  7. Unnasch TR, Meredith SE, , 1996. The use of degenerate primers in conjunction with strain and species oligonucleotides to classify Onchocerca volvulus. Methods Mol Biol 50: 293303. [Google Scholar]
  8. Fink DL, Fahle GA, Fischer S, Fedorko DF, Nutman TB, , 2011. Toward molecular parasitologic diagnosis: enhanced diagnostic sensitivity for filarial infections in mobile populations. J Clin Microbiol 49: 4247. [Google Scholar]
  9. Zimmerman PA, Guderian RH, Aruajo E, Elson L, Phadke P, Kubofcik J, Nutman TB, , 1994. Polymerase chain reaction-based diagnosis of Onchocerca volvulus infection: improved detection of patients with onchocerciasis. J Infect Dis 169: 686689. [Google Scholar]
  10. Toe L, Boatin BA, Adjami A, Back C, Merriweather A, Unnasch TR, , 1998. Detection of Onchocerca volvulus infection by O-150 polymerase chain reaction analysis of skin scratches. J Infect Dis 178: 282285. [Google Scholar]
  11. Lloyd MM, Gilbert R, Taha NT, Weil GJ, Meite A, Kouakou IM, Fischer PU, , 2015. Conventional parasitology and DNA-based diagnostic methods for onchocerciasis elimination programmes. Acta Trop 146: 114118. [Google Scholar]
  12. Thiele EA, Cama VA, Lakwo T, Mekasha S, Abanyie F, Sleshi M, Kebede A, Cantey PT, , 2016. Detection of Onchocerca volvulus in skin snips by microscopy and real-time polymerase chain reaction: implications for monitoring and evaluation activities. Am J Trop Med Hyg 94: 906911. [Google Scholar]
  13. Lipner EM, Dembele N, Souleymane S, Alley WS, Prevots DR, Toe L, Boatin B, Weil GJ, Nutman TB, , 2006. Field applicability of a rapid-format anti-Ov-16 antibody test for the assessment of onchocerciasis control measures in regions of endemicity. J Infect Dis 194: 216221. [Google Scholar]
  14. Lobos E, Weiss N, Karam M, Taylor HR, Ottesen EA, Nutman TB, , 1991. An immunogenic Onchocerca volvulus antigen: a specific and early marker of infection. Science 251: 16031605. [Google Scholar]
  15. Gopal H, Hassan HK, Rodriguez-Perez MA, Toe LD, Lustigman S, Unnasch TR, , 2012. Oligonucleotide based magnetic bead capture of Onchocerca volvulus DNA for PCR pool screening of vector black flies. PLoS Negl Trop Dis 6: e1712. [Google Scholar]
  16. Downes BL, Jacobsen KH, , 2010. A systematic review of the epidemiology of mansonelliasis. Afr J Infect Dis 4: 714. [Google Scholar]
  17. Hawking F, , 1977. The distribution of human filariasis throughout the world. Part III. Africa. Trop Dis Bull 74: 649679. [Google Scholar]
  18. Simonsen PE, Onapa AW, Asio SM, , 2011. Mansonella perstans filariasis in Africa. Acta Trop 120 (Suppl 1): S109S120. [Google Scholar]
  19. Zoure HG, Wanji S, Noma M, Amazigo UV, Diggle PJ, Tekle AH, Remme JH, , 2011. The geographic distribution of Loa loa in Africa: results of large-scale implementation of the Rapid Assessment Procedure for Loiasis (RAPLOA). PLoS Negl Trop Dis 5: e1210. [Google Scholar]
  20. Fischer P, Buttner DW, Bamuhiiga J, Williams SA, , 1998. Detection of the filarial parasite Mansonella streptocerca in skin biopsies by a nested polymerase chain reaction-based assay. Am J Trop Med Hyg 58: 816820. [Google Scholar]
  21. Padgett JJ, Jacobsen KH, , 2008. Loiasis: African eye worm. Trans R Soc Trop Med Hyg 102: 983989. [Google Scholar]
  22. Wilson NO, 2016. Evaluation of lymphatic filariasis and onchocerciasis in three senegalese districts treated for onchocerciasis with ivermectin. PLoS Negl Trop Dis 10: e0005198. [Google Scholar]
  23. Steel C, Golden A, Stevens E, Yokobe L, Domingo GJ, de los Santos T, Nutman TB, , 2015. Rapid point-of-contact tool for mapping and integrated surveillance of Wuchereria bancrofti and Onchocerca volvulus infection. Clin Vaccine Immunol 22: 896901. [Google Scholar]
  24. Moya L, 2016. Evidence for suppression of onchocerciasis transmission in Bioko Island, Equatorial Guinea. PLoS Negl Trop Dis 10: e0004829. [Google Scholar]
  25. Katabarwa MN, 2012. Transmission of onchocerciasis in wadelai focus of northwestern Uganda has been interrupted and the disease eliminated. J Parasitol Res 2012: 748540. [Google Scholar]
  26. Golden A, 2013. Extended result reading window in lateral flow tests detecting exposure to Onchocerca volvulus: a new technology to improve epidemiological surveillance tools. PLoS One 8: e69231. [Google Scholar]
  27. Evans DS, 2014. Status of onchocerciasis transmission after more than a decade of mass drug administration for onchocerciasis and lymphatic filariasis elimination in central Nigeria: challenges in coordinating the stop MDA decision. PLoS Negl Trop Dis 8: e3113. [Google Scholar]
  28. WHO, 2016. Guidelines for Stopping Mass Drug Administration and Verifying Elimination of Human Onchocerciasis: Criteria and Procedures. Geneva, Switzerland: World Health Organization.
  29. Taylor HR, Munoz B, Keyvan-Larijani E, Greene BM, , 1989. Reliability of detection of microfilariae in skin snips in the diagnosis of onchocerciasis. Am J Trop Med Hyg 41: 467471. [Google Scholar]
  30. Alhassan A, Makepeace BL, LaCourse EJ, Osei-Atweneboana MY, Carlow CK, , 2014. A simple isothermal DNA amplification method to screen black flies for Onchocerca volvulus infection. PLoS One 9: e108927. [Google Scholar]
  31. Mourembou G, 2015. Mansonella, including a potential new species, as common parasites in children in Gabon. PLoS Negl Trop Dis 9: e0004155. [Google Scholar]
  32. Fink DL, Kamgno J, Nutman TB, , 2011. Rapid molecular assays for specific detection and quantitation of Loa loa microfilaremia. PLoS Negl Trop Dis 5: e1299. [Google Scholar]
  33. Howe KL, 2016. WormBase 2016: expanding to enable helminth genomic research. Nucleic Acids Res 44: D774D780. [Google Scholar]
  34. Howe KL, Bolt BJ, Shafie M, Kersey P, Berriman M, , 2017. WormBase ParaSite—a comprehensive resource for helminth genomics. Mol Biochem Parasitol 215: 210. [Google Scholar]
  35. Eisenbarth A, Achukwi MD, Renz A, , 2016. Ongoing transmission of Onchocerca volvulus after 25 years of annual ivermectin mass treatments in the Vina du Nord River Valley, in North Cameroon. PLoS Negl Trop Dis 10: e0004392. [Google Scholar]
  36. Eisenbarth A, Ekale D, Hildebrandt J, Achukwi MD, Streit A, Renz A, , 2013. Molecular evidence of ‘Siisa form’, a new genotype related to Onchocerca ochengi in cattle from north Cameroon. Acta Trop 127: 261265. [Google Scholar]
  37. Krueger A, Fischer P, Morales-Hojas R, , 2007. Molecular phylogeny of the filaria genus Onchocerca with special emphasis on Afrotropical human and bovine parasites. Acta Trop 101: 114. [Google Scholar]
  38. Lagatie O, Merino M, Batsa Debrah L, Debrah AY, Stuyver LJ, , 2016. An isothermal DNA amplification method for detection of Onchocerca volvulus infection in skin biopsies. Parasit Vectors 9: 624. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.17-0809
Loading
/content/journals/10.4269/ajtmh.17-0809
Loading

Data & Media loading...

Supplemental Figures and Table

  • Received : 13 Oct 2017
  • Accepted : 28 Jan 2018
  • Published online : 09 May 2018

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error