1921
Volume 98, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Loop-mediated isothermal amplification (LAMP) is ideal for the detection of DNA as it is a quick and easy-to-perform test that does not require complex or sophisticated equipment or infrastructure. However, the application of this technique in the detection of DNA has not been comprehensively analyzed to date (analytical validation). Our objective was to evaluate the sensitivity and analytical specificity (anticipated reportable range [ARR], the limit of detection [LoD], and accuracy) of LAMP targeting the 18S rRNA gene in the diagnosis of six New World species. We then applied the validated LAMP assay across 50 samples of sandflies and 50 direct smears from a recent outbreak of cutaneous leishmaniasis in Colombia to determine its diagnostic performance. The LAMP assay exclusively amplified the DNA of spp., and an ARR of between 1 × 10 and 1 × 10 equivalent parasites/mL was determined. An LoD of 1 × 10 equivalent parasites/mL was established and there was no statistically significant variation in terms of accuracy. Finally, a sensitivity of 100% in direct smears and sandflies samples was calculated and a specificity of 90.9% for direct smears using microscopy as reference and 96.8% for sandflies using real-time polymerase chain reaction as reference were determined. To our knowledge, this is the first attempt to analytically validate a LAMP test to detect DNA, which showed good diagnostic potential from sandflies and direct smear samples.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.17-0808
2018-03-12
2019-05-22
Loading full text...

Full text loading...

/deliver/fulltext/14761645/98/5/tpmd170808.html?itemId=/content/journals/10.4269/ajtmh.17-0808&mimeType=html&fmt=ahah

References

  1. Akhoundi M, 2017. Leishmania infections: molecular targets and diagnosis. Mol Aspects Med 57: 129. [Google Scholar]
  2. Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M, WHO Leishmaniasis Control Team; , 2012. Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7: e35671. [Google Scholar]
  3. World Health Organization (WHO)/Department of Control of Neglected Tropical Diseases, 2017. Global leishmaniasis update, 2006–2015: a turning point in leishmaniasis surveillance. Weekly Epidemiological Record 38: 557565. [Google Scholar]
  4. Montalvo AM, Fraga J, Tirado D, Blandón G, Alba A, Van der Auwera G, Vélez ID, Muskus C, , 2017. Detection and identification of Leishmania spp.: application of two Hsp70-based PCR-RFLP protocols to clinical samples from the New World. Parasitol Res 116: 18431848. [Google Scholar]
  5. Ramirez JD, Hernandez C, Leon CM, Ayala MS, Florez C, González C, , 2016. Taxonomy, diversity, temporal and geographical distribution of cutaneous leishmaniasis in Colombia: a retrospective study. Sci Rep 6: 28266. [Google Scholar]
  6. Mohammadiha A, Mohebali M, Haghighi A, Mahdian R, Abadi AR, Zarei Z, Yeganeh F, Kazemi B, Taghipour N, Akhoundi B, , 2013. Comparison of real-time PCR and conventional PCR with two DNA targets for detection of Leishmania (Leishmania) infantum infection in human and dog blood samples. Exp Parasitol 133: 8994. [Google Scholar]
  7. Munoz EB, Santander S, Rojas-Silva P, Cardenas PA, Fornasini M, Cifuentes SC, Salvador D, Baldeón ME, , 2016. Diagnostic efficacy of molecular techniques for detection and identification of Leishmania species in human whole blood and skin samples from Ecuador. Am J Trop Med Hyg 95: 803805. [Google Scholar]
  8. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T, , 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28: E63. [Google Scholar]
  9. Tomita N, Mori Y, Kanda H, Notomi T, , 2008. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc 3: 877882. [Google Scholar]
  10. Adams ER, Gomez MA, Scheske L, Rios R, Marquez R, Cossio A, Albertini A, Schallig H, Saravia NG, , 2014. Sensitive diagnosis of cutaneous leishmaniasis by lesion swab sampling coupled to qPCR. Parasitology 141: 18911897. [Google Scholar]
  11. Mikita K, Maeda T, Yoshikawa S, Ono T, Miyahira Y, Kawana A, , 2014. The Direct Boil-LAMP method: a simple and rapid diagnostic method for cutaneous leishmaniasis. Parasitol Int 63: 785789. [Google Scholar]
  12. Abbasi I, Kirstein OD, Hailu A, Warburg A, , 2016. Optimization of loop-mediated isothermal amplification (LAMP) assays for the detection of Leishmania DNA in human blood samples. Acta Trop 162: 2026. [Google Scholar]
  13. Ghasemian M, Gharavi MJ, Akhlaghi L, Mohebali M, Meamar AR, Aryan E, Oormazdi H, , 2014. Development and assessment of loop-mediated isothermal amplification (LAMP) assay for the diagnosis of human visceral leishmaniasis in Iran. Iran J Parasitol 9: 5059. [Google Scholar]
  14. Sriworarat C, Phumee A, Mungthin M, Leelayoova S, Siriyasatien P, , 2015. Development of loop-mediated isothermal amplification (LAMP) for simple detection of Leishmania infection. Parasit Vectors 8: 591. [Google Scholar]
  15. Qiao YM, Guo YC, Zhang XE, Zhou YF, Zhang ZP, Wei HP, Yang RF, Wang DB, , 2007. Loop-mediated isothermal amplification for rapid detection of Bacillus anthracis spores. Biotechnol Lett 29: 19391946. [Google Scholar]
  16. Villari C, Tomlinson JA, Battisti A, Boonham N, Capretti P, Faccoli M, , 2013. Use of loop-mediated isothermal amplification for detection of Ophiostoma clavatum, the primary blue stain fungus associated with Ips acuminatus. Appl Environ Microbiol 79: 25272533. [Google Scholar]
  17. Inacio J, Flores O, Spencer-Martins I, , 2008. Efficient identification of clinically relevant Candida yeast species by use of an assay combining panfungal loop-mediated isothermal DNA amplification with hybridization to species-specific oligonucleotide probes. J Clin Microbiol 46: 713720. [Google Scholar]
  18. Wozniakowski G, Samorek-Salamonowicz E, Kozdrun W, , 2013. Comparison of loop-mediated isothermal amplification and PCR for the detection and differentiation of Marek’s disease virus serotypes 1, 2, and 3. Avian Dis 57: 539543. [Google Scholar]
  19. Hong TC, Mai QL, Cuong DV, Parida M, Minekawa H, Notomi T, Hasebe F, Morita K, , 2004. Development and evaluation of a novel loop-mediated isothermal amplification method for rapid detection of severe acute respiratory syndrome coronavirus. J Clin Microbiol 42: 19561961. [Google Scholar]
  20. Kuboki N, Inoue N, Sakurai T, Di Cello F, Grab DJ, Suzuki H, Sugimoto C, Igarashi I, , 2003. Loop-mediated isothermal amplification for detection of African trypanosomes. J Clin Microbiol 41: 55175524. [Google Scholar]
  21. Poon LL, 2006. Sensitive and inexpensive molecular test for falciparum malaria: detecting Plasmodium falciparum DNA directly from heat-treated blood by loop-mediated isothermal amplification. Clin Chem 52: 303306. [Google Scholar]
  22. Besuschio SA, 2017. Analytical sensitivity and specificity of a loop-mediated isothermal amplification (LAMP) kit prototype for detection of Trypanosoma cruzi DNA in human blood samples. PLoS Negl Trop Dis 11: e0005779. [Google Scholar]
  23. Nzelu CO, Gomez EA, Caceres AG, Sakurai T, Martini-Robles L, Uezato H, Mimori T, Katakura K, Hashiguchi Y, Kato H, , 2014. Development of a loop-mediated isothermal amplification method for rapid mass-screening of sand flies for Leishmania infection. Acta Trop 132: 16. [Google Scholar]
  24. Khan MG, Bhaskar KR, Salam MA, Akther T, Pluschke G, Mondal D, , 2012. Diagnostic accuracy of loop-mediated isothermal amplification (LAMP) for detection of Leishmania DNA in buffy coat from visceral leishmaniasis patients. Parasit Vectors 5: 280. [Google Scholar]
  25. Takagi H, Itoh M, Islam MZ, Razzaque A, Ekram AR, Hashighuchi Y, Noiri E, Kimura E, , 2009. Sensitive, specific, and rapid detection of Leishmania donovani DNA by loop-mediated isothermal amplification. Am J Trop Med Hyg 81: 578582. [Google Scholar]
  26. Verma S, Avishek K, Sharma V, Negi NS, Ramesh V, Salotra P, , 2013. Application of loop-mediated isothermal amplification assay for the sensitive and rapid diagnosis of visceral leishmaniasis and post-kala-azar dermal leishmaniasis. Diagn Microbiol Infect Dis 75: 390395. [Google Scholar]
  27. Aonuma H, Yoshimura A, Perera N, Shinzawa N, Bando H, Oshiro S, Nelson B, Fukumoto S, Kanuka H, , 2009. Loop-mediated isothermal amplification applied to filarial parasites detection in the mosquito vectors: Dirofilaria immitis as a study model. Parasit Vectors 2: 15. [Google Scholar]
  28. Thekisoe OM, Rodriguez CV, Rivas F, Coronel-Servian AM, Fukumoto S, Sugimoto C, Kawazu S, Inoue N, , 2010. Detection of Trypanosoma cruzi and T. rangeli infections from Rhodnius pallescens bugs by loop-mediated isothermal amplification (LAMP). Am J Trop Med Hyg 82: 855860. [Google Scholar]
  29. Pourmohammadi B, Motazedian M, Hatam G, Kalantari M, Habibi P, Sarkari B, , 2010. Comparison of three methods for diagnosis of cutaneous leishmaniasis. Iran J Parasitol 5: 18. [Google Scholar]
  30. NCCLS, 2004. Protocols for Determination of Limits of Detection and Limits of Quantification; Approved Guideline, Vol. 24(10). Wayne, Pennsylvania: NCCLS.
  31. Cruz IC, Cañavate JM, Rubio MA, Morales C, Chicharro F, Laguna F, Jiménez-Mejías M, Sirera G, Videla S, Alvar J, , 2012. A nested polymerase chain reaction (Ln-PCR) for diagnosing and monitoring Leishmania infantum infection in co-infected patients with human immunodeficiency virus. Trans R Soc Trop Med Hyg 96: 185189. [Google Scholar]
  32. Bezerra-Vasconcelos DR, Melo LM, Albuquerque ES, Luciano MC, Bevilaqua CM, , 2011. Real-time PCR to assess the Leishmania load in Lutzomyia longipalpis sand flies: screening of target genes and assessment of quantitative methods. Exp Parasitol 129: 234239. [Google Scholar]
  33. Marfurt J, Nasereddin A, Niederwieser I, Jaffe CL, Beck HP, Felger I, , 2003. Identification and differentiation of Leishmania species in clinical samples by PCR amplification of the miniexon sequence and subsequent restriction fragment length polymorphism analysis. J Clin Microbiol 41: 31473153. [Google Scholar]
  34. Wortmann G, Sweeney C, Houng HS, Aronson N, Stiteler J, Jackson J, Ockenhouse C, , 2001. Rapid diagnosis of leishmaniasis by fluorogenic polymerase chain reaction. Am J Trop Med Hyg 65: 583587. [Google Scholar]
  35. Bensoussan E, Nasereddin A, Jonas F, Schnur LF, Jaffe CL, , 2006. Comparison of PCR assays for diagnosis of cutaneous leishmaniasis. J Clin Microbiol 44: 14351439. [Google Scholar]
  36. Goto H, Lauletta Lindoso JA, , 2012. Cutaneous and mucocutaneous leishmaniasis. Infect Dis Clin North Am 26: 293307. [Google Scholar]
  37. Szargiki R, Castro EA, Luz E, Kowalthuk W, Machado AM, Thomaz-Soccol V, , 2009. Comparison of serological and parasitological methods for cutaneous leishmaniasis diagnosis in the state of Parana, Brazil. Braz J Infect Dis 13: 4752. [Google Scholar]
  38. Singh S, Dey A, Sivakumar R, , 2005. Applications of molecular methods for Leishmania control. Expert Rev Mol Diagn 5: 251265. [Google Scholar]
  39. Brito ME, Mendonca MG, Gomes YM, Jardim ML, Abath FG, , 2001. Dynamics of the antibody response in patients with therapeutic or spontaneous cure of American cutaneous leishmaniasis. Trans R Soc Trop Med Hyg 95: 203206. [Google Scholar]
  40. Marco JD, Bhutto AM, Soomro FR, Baloch JH, Barroso PA, Kato H, Uezato H, Katakura K, Korenaga M, Nonaka S, , 2006. Multilocus enzyme electrophoresis and cytochrome B gene sequencing-based identification of Leishmania isolates from different foci of cutaneous leishmaniasis in Pakistan. Am J Trop Med Hyg 75: 261266. [Google Scholar]
  41. Wincker P, Ravel C, Britto C, Dubessay P, Bastien P, Pagès M, Blaineau C, , 1997. A direct method for the chromosomal assignment of DNA markers in Leishmania. Gene 194: 7780. [Google Scholar]
  42. Eroglu F, Uzun S, Koltas IS, , 2014. Comparison of clinical samples and methods in chronic cutaneous leishmaniasis. Am J Trop Med Hyg 91: 895900. [Google Scholar]
  43. Motazedian H, Karamian M, Noyes HA, Ardehali S, , 2002. DNA extraction and amplification of Leishmania from archived, Giemsa-stained slides, for the diagnosis of cutaneous leishmaniasis by PCR. Ann Trop Med Parasitol 96: 3134. [Google Scholar]
  44. Yokota M, Tatsumi N, Tsuda I, Yano I, , 1995. DNA extraction and amplification from Giemsa-stained blood smears. J Clin Lab Anal 9: 387391. [Google Scholar]
  45. Caicedo L, Márquez P, Sánchez M, Ortíz Arauz A, Solorzano L, Castro G, Pozo W, , 2016. Comparison of the sensitivity of PCR to other laboratory techniques used for the diagnosis of cutaneous leishmaniasis in Ecuador. Centro de Biotecnología 5: 8090. [Google Scholar]
  46. Mimori T, Matsumoto T, Calvopina MH, Gomez EA, Saya H, Katakura K, Nonaka S, Shamsuzzaman SM, Hashiguchi Y, , 2002. Usefulness of sampling with cotton swab for PCR-diagnosis of cutaneous leishmaniasis in the New World. Acta Trop 81: 197202. [Google Scholar]
  47. Cortes S, Rolao N, Ramada J, Campino L, , 2004. PCR as a rapid and sensitive tool in the diagnosis of human and canine leishmaniasis using Leishmania donovani s.l.-specific kinetoplastid primers. Trans R Soc Trop Med Hyg 98: 1217. [Google Scholar]
  48. Tsokana CN, Athanasiou LV, Valiakos G, Spyrou V, Manolakou K, Billinis C, , 2014. Molecular diagnosis of leishmaniasis, species identification and phylogenetic analysis. Claborn D, ed. Leishmaniasis—Trends in Epidemiology, Diagnosis and Treatment. London, United Kingdom: InTech.
  49. Jara M, Adaui V, Valencia BM, Martinez D, Alba M, Castrillon C, Cruz M, Cruz I, Van der Auwera G, Llanos-Cuentas A, , 2013. Real-time PCR assay for detection and quantification of Leishmania (Viannia) organisms in skin and mucosal lesions: exploratory study of parasite load and clinical parameters. J Clin Microbiol 51: 18261833. [Google Scholar]
  50. Marquez LM, Lampo M, Rinaldi M, Lau P, , 2001. Gene flow between natural and domestic populations of Lutzomyia longipalpis (Diptera: Psychodidae) in a restricted focus of American visceral leishmaniasis in Venezuela. J Med Entomol 38: 1216. [Google Scholar]
  51. Rodriguez N, Bailey BN, Martin MB, Oldfield E, Urbina JA, Docampo R, , 2002. Radical cure of experimental cutaneous leishmaniasis by the bisphosphonate pamidronate. J Infect Dis 186: 138140. [Google Scholar]
  52. Garcia AL, Tellez T, Parrado R, Rojas E, Bermudez H, Dujardin JC, , 2007. Epidemiological monitoring of American tegumentary leishmaniasis: molecular characterization of a peridomestic transmission cycle in the Amazonian lowlands of Bolivia. Trans R Soc Trop Med Hyg 101: 12081213. [Google Scholar]
  53. Ovalle C, Porras L, Muvdi S, Rios M, , 2007. Polymerase chain reaction with two molecular targets in mucosal leishmaniasis’ diagnosis: a validation study. Mem Inst Oswaldo Cruz 102: 549554. [Google Scholar]
  54. Mondal D, Ghosh P, Khan MA, Hossain F, Bohlken-Fascher S, Matlashewski G, Kroeger A, Olliaro P, Abd El Wahed A, , 2016. Mobile suitcase laboratory for rapid detection of Leishmania donovani using recombinase polymerase amplification assay. Parasit Vectors 9: 281. [Google Scholar]
  55. Duffy T, Cura CI, Ramirez JC, Abate T, Cayo NM, Parrado R, Bello ZD, Velazquez E, Muñoz-Calderon A, Juiz NA, , 2013. Analytical performance of a multiplex Real-Time PCR assay using TaqMan probes for quantification of Trypanosoma cruzi satellite DNA in blood samples. PLoS Negl Trop Dis 7: e2000. [Google Scholar]
  56. Ramirez JD, Hernandez C, , 2017. Trypanosoma cruzi I: towards the need of genetic subdivision? Part II. Acta Trop pii: S0001-706X(17)30250-4. [Google Scholar]
  57. Sterkers Y, 2010. Multicentric comparative analytical performance study for molecular detection of low amounts of Toxoplasma gondii from simulated specimens. J Clin Microbiol 48: 32163222. [Google Scholar]
  58. Tiwananthagorn S, Kato H, Yeewa R, Muengpan A, Polseela R, Leelayoova S, , 2017. Comparison of LAMP and PCR for molecular mass screening of sand flies for Leishmania martiniquensis infection. Mem. Inst. Oswaldo Cruz 112: 100107. [Google Scholar]
  59. Santamaria E, Ponce N, Zipa Y, Ferro C, , 2006. Presence of infected vectors of Leishmania (V.) panamensis within dwellings in two endemic foci in the foothill of the middle Magdalena valley, western Boyaca, Colombia [Spanish]. Biomedica 26 (Suppl 1): 8294. [Google Scholar]
  60. Vivero RJ, Quintero LS, Pena HC, Alvar-Beltran J, Tovar C, Atencia CM, Vélez ID, , 2017. Composition and distribution of medically important phlebotomines (Diptera: Psychodidae) in the municipalities of Tierralta and Valencia (Cordoba, Colombia). J Vector Borne Dis 54: 8795. [Google Scholar]
  61. León CM, Muñoz M, Hernández DC, Teherán A, Ayala MS, Florez C, Ramírez JD, , 2017. Analytical performance of four polymerase chain reaction (PCR) and real time PCR (qPCR) assays for the detection of six Leishmania species DNA in Colombia. Front Microbiol 8: 1907. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.17-0808
Loading
/content/journals/10.4269/ajtmh.17-0808
Loading

Data & Media loading...

Supplemental Table

  • Received : 13 Oct 2017
  • Accepted : 26 Dec 2017
  • Published online : 12 Mar 2018

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error