1921
Volume 98, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

We assessed the ex vivo/in vitro sensitivity of 54 Malian isolates to artemisinin for the monitoring of drug resistance in this area. The artemisinin sensitivity of parasites was evaluated using 1) the ex vivo and in vitro parasite recrudescence detection after treatment of the ring stage with 1–200 nM artemisinin for 48 hours and 2) the in vitro parasite recrudescence kinetics assay over 7 days after 6-hour treatment of the ring stage with 700 nM dihydroartemisinin (DHA). In addition, as recommended by the World Health Organization for artemisinin resistance characterization, the ring-stage survival assay (RSA) was performed and the parasite isolates were sequenced at the kelch 13 propeller locus. No clinical and molecular evidence of artemisinin resistance was observed. However, these isolates present different phenotypic profiles in response to artemisinin treatments. Despite all RSA values less than 1.5%, six out of 46 (13.0%) isolates tested ex vivo and four out of six (66.7%) isolates tested in vitro were able to multiply after 48-hour treatments with 100 nM artemisinin. Moreover, five out of eight isolates tested showed faster parasite recovery after DHA treatment in kinetic assays. The presence of such phenotypes needs to be taken into account in the assessment of the efficacy of artemisinins in Mali. The assays presented here appear as valuable tools for the monitoring of artemisinin sensitivity in the field and thus could help to evaluate the risk of emergence of artemisinin resistance in Africa.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.17-0798
2018-02-12
2019-04-25
Loading full text...

Full text loading...

/deliver/fulltext/14761645/98/4/tpmd170798.html?itemId=/content/journals/10.4269/ajtmh.17-0798&mimeType=html&fmt=ahah

References

  1. Walther B, Walther M, , 2007. What does it take to control malaria? Ann Trop Med Parasitol 101: 657672. [Google Scholar]
  2. WHO, 2016. World Malaria Report 2016. Geneva, Switzerland: World Health Organization.
  3. Dondorp AM, 2009. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361: 455467. [Google Scholar]
  4. Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM, , 2008. Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med 359: 26192620. [Google Scholar]
  5. Phyo AP, 2012. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet 379: 19601966. [Google Scholar]
  6. Kyaw MP, 2013. Reduced susceptibility of Plasmodium falciparum to artesunate in southern Myanmar. PLoS One 8: e57689. [Google Scholar]
  7. Thriemer K, 2014. Delayed parasite clearance after treatment with dihydroartemisinin-piperaquine in Plasmodium falciparum malaria patients in central Vietnam. Antimicrob Agents Chemother 58: 70497055. [Google Scholar]
  8. Na-Bangchang K, Karbwang J, , 2013. Emerging artemisinin resistance in the border areas of Thailand. Expert Rev Clin Pharmacol 6: 307322. [Google Scholar]
  9. WHO, 2016. Artemisinin and Artemisinin-based Combination Therapy Resistance. Geneva, Switzerland: World Health Organization.
  10. Ménard D, KARMA Consortium , 2016. A worldwide map of Plasmodium falciparum K13-propeller polymorphisms. N Engl J Med 374: 24532464. [Google Scholar]
  11. Takala-Harrison S, 2015. Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. J Infect Dis 211: 670679. [Google Scholar]
  12. Miotto O, 2015. Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nat Genet 47: 226234. [Google Scholar]
  13. Slater HC, Griffin JT, Ghani AC, Okell LC, , 2016. Assessing the potential impact of artemisinin and partner drug resistance in sub-Saharan Africa. Malar J 15: 10. [Google Scholar]
  14. Lubell Y, Dondorp A, Guérin PJ, Drake T, Meek S, Ashley E, Day NP, White NJ, White LJ, , 2014. Artemisinin resistance—modelling the potential human and economic costs. Malar J 13: 452. [Google Scholar]
  15. Saralamba S, 2011. Intrahost modeling of artemisinin resistance in Plasmodium falciparum. Proc Natl Acad Sci USA 108: 397402. [Google Scholar]
  16. Witkowski B, Lelièvre J, Barragán MJL, Laurent V, Su XZ, Berry A, Benoit-Vical F, , 2010. Increased tolerance to artemisinin in Plasmodium falciparum is mediated by a quiescence mechanism. Antimicrob Agents Chemother 54: 18721877. [Google Scholar]
  17. Witkowski B, 2013. Reduced artemisinin susceptibility of Plasmodium falciparum ring stages in western Cambodia. Antimicrob Agents Chemother 57: 914923. [Google Scholar]
  18. Teuscher F, Chen N, Kyle DE, Gatton ML, Cheng Q, , 2012. Phenotypic changes in artemisinin-resistant Plasmodium falciparum lines in vitro: evidence for decreased sensitivity to dormancy and growth inhibition. Antimicrob Agents Chemother 56: 428431. [Google Scholar]
  19. Teuscher F, Gatton ML, Chen N, Peters J, Kyle DE, Cheng Q, , 2010. Artemisinin‐induced dormancy in Plasmodium falciparum: duration, recovery rates, and implications in treatment failure. J Infect Dis 202: 13621368. [Google Scholar]
  20. Ariey F, 2014. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505: 5055. [Google Scholar]
  21. Straimer J, 2015. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science 347: 428431. [Google Scholar]
  22. Ashley EA, Tracking Resistance to Artemisinin Collaboration (TRAC) , 2014. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 371: 411423. [Google Scholar]
  23. Tun KM, 2015. Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker. Lancet Infect Dis 15: 415421. [Google Scholar]
  24. Taylor SM, 2015. Absence of putative artemisinin resistance mutations among Plasmodium falciparum in sub-Saharan Africa: a molecular epidemiologic study. J Infect Dis 211: 680688. [Google Scholar]
  25. Conrad MD, Bigira V, Kapisi J, Muhindo M, Kamya MR, Havlir DV, Dorsey G, Rosenthal PJ, , 2014. Polymorphisms in K13 and falcipain-2 associated with artemisinin resistance are not prevalent in Plasmodium falciparum isolated from Ugandan children. PLoS One 9: e105690. [Google Scholar]
  26. Mvumbi DM, Bobanga TL, Kayembe J-MN, Mvumbi GL, Situakibanza HN-T, Benoit-Vical F, Melin P, De Mol P, Hayette M-P, , 2017. Molecular surveillance of Plasmodium falciparum resistance to artemisinin-based combination therapies in the Democratic Republic of Congo. PLoS One 12: e0179142. [Google Scholar]
  27. Maiga AW, 2012. No evidence of delayed parasite clearance after oral artesunate treatment of uncomplicated falciparum malaria in Mali. Am J Trop Med Hyg 87: 2328. [Google Scholar]
  28. Niaré K, 2016. In vivo efficacy and parasite clearance of artesunate + sulfadoxine-pyrimethamine versus artemether-lumefantrine in Mali. Am J Trop Med Hyg 94: 634639. [Google Scholar]
  29. Perfect JR, Cox GM, , 1999. Drug resistance in Cryptococcus neoformans. Drug Resist Updat 2: 259269. [Google Scholar]
  30. Witkowski B, 2013. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies. Lancet Infect Dis 13: 10431049. [Google Scholar]
  31. Chotivanich K, Tripura R, Das D, Yi P, Day NPJ, Pukrittayakamee S, Chuor CM, Socheat D, Dondorp AM, White NJ, , 2014. Laboratory detection of artemisinin-resistant Plasmodium falciparum. Antimicrob Agents Chemother 58: 31573161. [Google Scholar]
  32. Ye R, 2016. Distinctive origin of artemisinin-resistant Plasmodium falciparum on the China-Myanmar border. Sci Rep 6: 20100. [Google Scholar]
  33. Menard S, 2016. Insight into k13-propeller gene polymorphism and ex vivo DHA-response profiles from Cameroonian isolates. Malar J 15: 572. [Google Scholar]
  34. Dicko A, 2007. Year-to-year variation in the age-specific incidence of clinical malaria in two potential vaccine testing sites in Mali with different levels of malaria transmission intensity. Am J Trop Med Hyg 77: 10281033. [Google Scholar]
  35. Klayman DL, , 1985. Qinghaosu (artemisinin): an antimalarial drug from China. Science 228: 10491055. [Google Scholar]
  36. Kerb R, Fux R, Mörike K, Kremsner PG, Gil JP, Gleiter CH, Schwab M, , 2009. Pharmacogenetics of antimalarial drugs: effect on metabolism and transport. Lancet Infect Dis 9: 760774. [Google Scholar]
  37. Moll K, Kaneko A, Scherf A, Wahlgren M, , eds., 2013. Methods in Malaria Research, 6th edition. Available at: https://www.beiresources.org/portals/2/MR4/Methods_In_Malaria_Research-6th_edition.pdf. Accessed January 7, 2017.
  38. Didier M, Menard D, Ariey F, , 2013. PCR_Sequencing for genotyping SNPs PF3D7_1343700 Kelch protein propeller domain. Protoc Exch 2013: doi:10.1038/protex.2013.096. [Google Scholar]
  39. Tinto H, 2014. Ex vivo anti-malarial drugs sensitivity profile of Plasmodium falciparum field isolates from Burkina Faso five years after the national policy change. Malar J 13: 207. [Google Scholar]
  40. Pradines B, Rogier C, Fusai T, Tall A, Trape JF, Doury JC, , 1998. In vitro activity of artemether against African isolates (Senegal) of Plasmodium falciparum in comparison with standard antimalarial drugs. Am J Trop Med Hyg 58: 354357. [Google Scholar]
  41. Fall B, 2011. Ex vivo susceptibility of Plasmodium falciparum isolates from Dakar, Senegal, to seven standard anti-malarial drugs. Malar J 10: 310. [Google Scholar]
  42. Quashie NB, 2013. A SYBR Green 1-based in vitro test of susceptibility of Ghanaian Plasmodium falciparum clinical isolates to a panel of anti-malarial drugs. Malar J 12: 450. [Google Scholar]
  43. Zatra R, Lekana-douki JB, Lekoulou F, Bisvigou U, Ngoungou EB, Ndouo FST, , 2012. In vitroantimalarial susceptibility and molecular markers of drug resistance in Franceville, Gabon. BMC Infect Dis 12: 307. [Google Scholar]
  44. Ngalah BS, 2015. Analysis of major genome loci underlying artemisinin resistance and pfmdr1 copy number in pre- and post-ACTs in western Kenya. Sci Rep 5: 8308. [Google Scholar]
  45. Witkowski B, 2013. Reduced artemisinin susceptibility of Plasmodium falciparum ring stages in western Cambodia. Antimicrob Agents Chemother 57: 914923. [Google Scholar]
  46. Ménard S, 2015. Induction of multidrug tolerance in Plasmodium falciparum by extended artemisinin pressure. Emerg Infect Dis 21: 17331741. [Google Scholar]
  47. Miotto O, 2013. Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia. Nat Genet 45: 648655. [Google Scholar]
  48. MalariaGEN Plasmodium falciparum Community Project, 2016. Genomic epidemiology of artemisinin resistant malaria. eLife 5: e08714. [Google Scholar]
  49. Amaratunga C, Witkowski B, Dek D, Try V, Khim N, Miotto O, Ménard D, Fairhurst RM, , 2014. Plasmodium falciparum founder populations in western Cambodia have reduced artemisinin sensitivity in vitro. Antimicrob Agents Chemother 58: 49354937. [Google Scholar]
  50. Leang R, Barrette A, Bouth DM, Menard D, Abdur R, Duong S, Ringwald P, , 2013. Efficacy of dihydroartemisinin-piperaquine for treatment of uncomplicated Plasmodium falciparum and Plasmodium vivax in Cambodia, 2008 to 2010. Antimicrob Agents Chemother 57: 818826. [Google Scholar]
  51. World Health Organization, 2017. Artemisinin and Artemisinin-Based Combination Therapy Resistance, April 2017. Available at: http://apps.who.int/iris/bitstream/10665/255213/1/WHO-HTM-GMP-2017.9-eng.pdf?ua=1. Accessed December 6, 2017.
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.17-0798
Loading
/content/journals/10.4269/ajtmh.17-0798
Loading

Data & Media loading...

Supplemental Figure and Table

  • Received : 11 Oct 2017
  • Accepted : 25 Dec 2017
  • Published online : 12 Feb 2018

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error