1921
Volume 98, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Antimalarial drug resistance has threatened global malaria control since chloroquine (CQ)-resistant emerged in Asia in the 1950s. Understanding the impacts of changing antimalarial drug policy on resistance is critical for resistance management. isolates were collected from 2003 to 2015 in western Kenya and analyzed for genetic markers associated with resistance to CQ (), sulfadoxine–pyrimethamine (SP) (/), and artemether–lumefantrine (AL) (/) antimalarials. In addition, household antimalarial drug use surveys were administered. 76T prevalence decreased from 76% to 6% from 2003 to 2015. / quintuple mutants decreased from 70% in 2003 to 14% in 2008, but increased to near fixation by 2015. SP “super resistant” alleles 581G and 613S/T were not detected in the 2015 samples that were assessed. The N86-184F-D1246 haplotype associated with decreased lumefantrine susceptibility increased significantly from 4% in 2005 to 51% in 2015. No mutations that have been previously associated with artemisinin resistance were detected in the study populations. The increase in / quintuple mutants that associates with SP resistance may have resulted from the increased usage of SP for intermittent preventative therapy in pregnancy (IPTp) and for malaria treatment in the community. Prevalent / mutations call for careful monitoring of SP resistance and effectiveness of the current IPTp program in Kenya. In addition, the commonly occurring N86-184F-D1246 haplotype associated with increased lumefantrine tolerance calls for surveillance of AL efficacy in Kenya, as well as consideration for a rotating artemisinin-combination therapy regimen.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.17-0763
2018-03-07
2019-03-22
Loading full text...

Full text loading...

/deliver/fulltext/14761645/98/3/tpmd170763.html?itemId=/content/journals/10.4269/ajtmh.17-0763&mimeType=html&fmt=ahah

References

  1. World Health Organization, 2001. Antimalarial Drug Combination Therapy: Report of a WHO Technical Consultation. Geneva, Switzerland: WHO. Available at: http://apps.who.int/iris/bitstream/10665/66952/1/WHO_CDS_RBM_2001.35.pdf.
  2. Wongsrichanalai C, Pickard AL, Wernsdorfer WH, Meshnick SR, , 2002. Epidemiology of drug-resistant malaria. Lancet Infect Dis 2: 209218. [Google Scholar]
  3. Lu F, 2017. Emergence of indigenous artemisinin-resistant Plasmodium falciparum in Africa. N Engl J Med 376: 991993. [Google Scholar]
  4. World Health Organization, 2016. World Malaria Report 2016. Geneva, Switzerland: WHO. Available at: http://www.who.int/malaria/publications/world-malaria-report-2016/report/en/.
  5. Beshir KB, 2013. Residual Plasmodium falciparum parasitemia in Kenyan children after artemisinin-combination therapy is associated with increased transmission to mosquitoes and parasite recurrence. J Infect Dis 208: 20172024. [Google Scholar]
  6. Sowunmi A, Adewoye EO, Gbotsho GO, Happi CT, Sijuade A, Folarin OA, Okuboyejo TM, Michael OS, , 2010. Factors contributing to delay in parasite clearance in uncomplicated falciparum malaria in children. Malar J 9: 53. [Google Scholar]
  7. Plucinski MM, 2017. Efficacy of artemether–lumefantrine, artesunate–amodiaquine, and dihydroartemisinin–piperaquine for treatment of uncomplicated Plasmodium falciparum malaria in Angola, 2015. Malar J 16: 62. [Google Scholar]
  8. Ménard D, 2016. A worldwide map of Plasmodium falciparum K13-propeller polymorphisms. N Engl J Med 374: 24532464. [Google Scholar]
  9. Muwanguzi J, Henriques G, Sawa P, Bousema T, Sutherland CJ, Beshir KB, , 2016. Lack of K13 mutations in Plasmodium falciparum persisting after artemisinin combination therapy treatment of Kenyan children. Malar J 15: 36. [Google Scholar]
  10. Cooper RA, Conrad MD, Watson QD, Huezo SJ, Ninsiima H, Tumwebaze P, Nsobya SL, Rosenthal PJ, , 2015. Lack of artemisinin resistance in Plasmodium falciparum in Uganda based on parasitological and molecular assays. Antimicrob Agents Chemother 59: 50615064. [Google Scholar]
  11. Boussaroque A, 2016. Emergence of mutations in the K13 propeller gene of Plasmodium falciparum isolates from Dakar, Senegal, in 2013–2014. Antimicrob Agents Chemother 60: 624627. [Google Scholar]
  12. Leang R, 2015. Evidence of Plasmodium falciparum malaria multidrug resistance to artemisinin and piperaquine in western Cambodia: dihydroartemisinin–piperaquine open-label multicenter clinical assessment. Antimicrob Agents Chemother 59: 47194726. [Google Scholar]
  13. Dixit A, Lee MC, Goettsch B, Afrane Y, Githeko AK, Yan G, , 2016. Discovering the cost of care: consumer, provider, and retailer surveys shed light on the determinants of malaria health-seeking behaviours. Malar J 15: 179. [Google Scholar]
  14. van Eijk AM, Hill J, Larsen DA, Webster J, Steketee RW, Eisele TP, ter Kuile FO, , 2013. Coverage of intermittent preventive treatment and insecticide-treated nets for the control of malaria during pregnancy in sub-Saharan Africa: a synthesis and meta-analysis of national survey data, 2009–11. Lancet Infect Dis 13: 10291042. [Google Scholar]
  15. Naidoo I, Roper C, , 2013. Mapping ‘partially resistant’, ‘fully resistant’, and ‘super resistant’ malaria. Trends Parasitol 29: 505515. [Google Scholar]
  16. Venkatesan M, 2014. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes: parasite risk factors that affect treatment outcomes for P. falciparum malaria after artemether–lumefantrine and artesunate–amodiaquine. Am J Trop Med Hyg 91: 833843. [Google Scholar]
  17. Ariey F, 2014. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505: 5055. [Google Scholar]
  18. Bereczky S, Mårtensson A, Gil JP, Färnert A, , 2005. Short report: rapid DNA extraction from archive blood spots on filter paper for genotyping of Plasmodium falciparum. Am J Trop Med Hyg 72: 249251. [Google Scholar]
  19. Rougemont M, Van Saanen M, Sahli R, Hinrikson HP, Bille J, Jaton K, , 2004. Detection of four Plasmodium species in blood from humans by 18S rRNA gene subunit-based and species-specific real-time PCR assays. J Clin Microbiol 42: 56365643. [Google Scholar]
  20. Vardo-Zalik AM, Zhou G, Zhong D, Afrane YA, Githeko AK, Yan G, , 2013. Alterations in Plasmodium falciparum genetic structure two years after increased malaria control efforts in western Kenya. Am J Trop Med Hyg 88: 2936. [Google Scholar]
  21. Zhang GQ, Guan YY, Sheng HH, Zheng B, Wu S, Xiao HS, Tang LH, , 2008. Multiplex PCR and oligonucleotide microarray for detection of single-nucleotide polymorphisms associated with Plasmodium falciparum drug resistance. J Clin Microbiol 46: 21672174. [Google Scholar]
  22. Wang P, Brooks DR, Sims PF, Hyde JE, , 1995. A mutation-specific PCR system to detect sequence variation in the dihydropteroatesynthetase gene of Plasmodium falciparum. Mol Biochem Parasitol 71: 115125. [Google Scholar]
  23. Malmberg M, Ferreira PE, Tarning J, Ursing J, Ngasala B, Björkman A, Mårtensson A, Gil JP, , 2012. Plasmodium falciparum drug resistance phenotype as assessed by patient antimalarial drug levels and its association with pfmdr1 polymorphisms. J Infect Dis 207: 842847. [Google Scholar]
  24. Taylor AR, Flegg JA, Holmes CC, Guérin PJ, Sibley CH, Conrad MD, Dorsey G, Rosenthal PJ, , 2017. Artemether–lumefantrine and dihydroartemisinin–piperaquine exert inverse selective pressure on Plasmodium falciparum drug sensitivity-associated haplotypes in Uganda. Open Forum Infect Dis 4: 229. [Google Scholar]
  25. Sisowath C, Ferreira PE, Bustamante LY, Dahlström S, Mårtensson A, Björkman A, Krishna S, Gil JP, , 2007. The role of pfmdr1 in Plasmodium falciparum tolerance to artemether–lumefantrine in Africa. Trop Med Int Health 12: 736742. [Google Scholar]
  26. Straimer J, 2015. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science 347: 428431. [Google Scholar]
  27. Ashley EA, 2014. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 371: 411423. [Google Scholar]
  28. Rousset F, , 2008. Genepop’007: a complete reimplementation of the genepop software for Windows and Linux. Mol Ecol Resour 8: 103106. [Google Scholar]
  29. Zhong D, Afrane Y, Githeko A, Cui L, Menge DM, Yan G, , 2008. Molecular epidemiology of drug-resistant malaria in western Kenya highlands. BMC Infect Dis 8: 105. [Google Scholar]
  30. Guyatt HL, Noor AM, Ochola SA, Snow RW, , 2004. Use of intermittent presumptive treatment and insecticide treated bed nets by pregnant women in four Kenyan districts. Trop Med Int Health 9: 255261. [Google Scholar]
  31. Gikandi PW, Noor AM, Gitonga CW, Ajanga AA, Snow RW, , 2008. Access and barriers to measures targeted to prevent malaria in pregnancy in rural Kenya. Trop Med Int Health 13: 208217. [Google Scholar]
  32. Kiarie WC, Wangai L, Agola E, Kimani FT, Hungu C, , 2015. Chloroquine sensitivity: diminished prevalence of chloroquine-resistant gene marker pfcrt-76 13 years after cessation of chloroquine use in Msambweni, Kenya. Malar J 14: 328. [Google Scholar]
  33. Sisowath C, Petersen I, Veiga MI, Mårtensson A, Premji Z, Björkman A, Fidock DA, Gil JP, , 2009. In vivo selection of Plasmodium falciparum parasites carrying the chloroquine-susceptible pfcrt K76 allele after treatment with artemether–lumefantrine in Africa. J Infect Dis 199: 750757. [Google Scholar]
  34. Achieng AO, 2015. Temporal trends in prevalence of Plasmodium falciparum molecular markers selected for by artemether–lumefantrine treatment in pre-ACT and post-ACT parasites in western Kenya. Int J Parasitol Drugs Drug Resist 5: 9299. [Google Scholar]
  35. Lucchi NW, 2015. In vitro and molecular surveillance for antimalarial drug resistance in Plasmodium falciparum parasites in Western Kenya reveals sustained artemisinin sensitivity and increased chloroquine sensitivity. Antimicrob Agents Chemother 59: 75407547. [Google Scholar]
  36. Mohammed A, 2013. Trends in chloroquine resistance marker, Pfcrt-K76T mutation ten years after chloroquine withdrawal in Tanzania. Malar J 12: 415. [Google Scholar]
  37. Kateera F, Nsobya SL, Tukwasibwe S, Hakizimana E, Mutesa L, Mens PF, Grobusch MP, van Vugt M, Kumar N, , 2016. Molecular surveillance of Plasmodium falciparum drug resistance markers reveals partial recovery of chloroquine susceptibility but sustained sulfadoxine–pyrimethamine resistance at two sites of different malaria transmission intensities in Rwanda. Acta Trop 164: 329336. [Google Scholar]
  38. Bousema JT, Gouagna LC, Meutstege AM, Okech BE, Akim NI, Githure JI, Beier JC, Sauerwein RW, , 2003. Treatment failure of pyrimethamine‐sulphadoxine and induction of Plasmodium falciparum gametocytaemia in children in western Kenya. Trop Med Int Health 8: 427430. [Google Scholar]
  39. World Health Organization, 2013. WHO Policy Brief for the Implementation of Intermittent Preventive Treatment of Malaria in Pregnancy Using Sulfadoxine–Pyrimethamine (IPTp-SP). Geneva, Switzerland: WHO. Available at: http://www.who.int/malaria/publications/atoz/policy_brief_iptp_sp_policy_recommendation/en/.
  40. McGready R, White NJ, Nosten F, , 2011. Parasitological efficacy of antimalarials in the treatment and prevention of falciparum malaria in pregnancy 1998 to 2009: a systematic review. Int J Gynaecol Obstet 118: 123135. [Google Scholar]
  41. Braun V, Rempis E, Schnack A, Decker S, Rubaihayo J, Tumwesigye NM, Theuring S, Harms G, Busingye P, Mockenhaupt FP, , 2015. Lack of effect of intermittent preventive treatment for malaria in pregnancy and intense drug resistance in western Uganda. Malar J 14: 372. [Google Scholar]
  42. Minja DT, 2013. Plasmodium falciparum mutant haplotype infection during pregnancy associated with reduced birthweight, Tanzania. Emerg Infect Dis 19: 130133. [Google Scholar]
  43. Harrington WE, Mutabingwa TK, Muehlenbachs A, Sorensen B, Bolla MC, Fried M, Duffy PE, , 2009. Competitive facilitation of drug-resistant Plasmodium falciparum malaria parasites in pregnant women who receive preventive treatment. Proc Natl Acad Sci USA 106: 90279032. [Google Scholar]
  44. Iriemenam NC, 2012. Temporal trends of sulphadoxine-pyrimethamine (SP) drug-resistance molecular markers in Plasmodium falciparum parasites from pregnant women in western Kenya. Malar J 11: 134. [Google Scholar]
  45. Spalding MD, Eyase FL, Akala HM, Bedno SA, Prigge ST, Coldren RL, Moss WJ, Waters NC, , 2010. Increased prevalence of the pfdhfr/phdhps quintuple mutant and rapid emergence of pfdhps resistance mutations at codons 581 and 613 in Kisumu, Kenya. Malar J 9: 338. [Google Scholar]
  46. Rosenthal PJ, , 2013. The interplay between drug resistance and fitness in malaria parasites. Mol Microbiol 89: 10251038. [Google Scholar]
  47. Kamau E, 2015. K13-propeller polymorphisms in Plasmodium falciparum parasites from sub-Saharan Africa. J Infect Dis 211: 13521355. [Google Scholar]
  48. Hawkes M, Conroy AL, Opoka RO, Namasopo S, Zhong K, Liles WC, John CC, Kain KC, , 2015. Slow clearance of Plasmodium falciparum in severe pediatric malaria, Uganda, 2011–2013. Emerg Infect Dis 21: 1237. [Google Scholar]
  49. Mohon AN, Alam MS, Bayih AG, Folefoc A, Shahinas D, Haque R, Pillai DR, , 2014. Mutations in Plasmodium falciparum K13 propeller gene from Bangladesh (2009–2013). Malar J 13: 431. [Google Scholar]
  50. MalariaGEN Plasmodium falciparum Community Project, 2016. Genomic epidemiology of artemisinin resistant malaria. Elife 5: e08714. [Google Scholar]
  51. Miotto O, 2015. Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nat Genet 47: 226234. [Google Scholar]
  52. Chebon LJ, 2016. Genetically determined response to artemisinin treatment in western Kenyan Plasmodium falciparum parasites. PLoS One 11: e0162524. [Google Scholar]
  53. Conrad MD, 2014. Comparative impacts over 5 years of artemisinin-based combination therapies on Plasmodium falciparum polymorphisms that modulate drug sensitivity in Ugandan children. J Infect Dis 210: 344353. [Google Scholar]
  54. Sidhu AB, Uhlemann AC, Valderramos SG, Valderramos JC, Krishna S, Fidock DA, , 2006. Decreasing pfmdr1 copy number in Plasmodium falciparum malaria heightens susceptibility to mefloquine, lumefantrine, halofantrine, quinine, and artemisinin. J Infect Dis 194: 528535. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.17-0763
Loading
/content/journals/10.4269/ajtmh.17-0763
Loading

Data & Media loading...

Supplemental Table

  • Received : 29 Sep 2017
  • Accepted : 17 Nov 2017

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error