1921
Volume 98, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

An overwintering population of has been documented in the Capitol Hill neighborhood of Washington, DC, since 2011. Mitochondrial cytochrome oxidase I () sequence data presented in a previous study traced the origin to the New World. Here, we use microsatellite and 14,071 single nucleotide polymorphisms along with mitochondrial DNA (mtDNA) sequences on Washington samples and samples from potential sources to further narrow the origin of this population. Genetically, Washington are closest to populations in Florida, meaning this is the most likely source. Florida experienced the first mosquito-borne transmission of dengue in the United States after decades of absence of this disease, as well as local transmission of chikungunya and Zika in recent years. This suggests that the Capitol Hill, Washington, DC population of is capable of transmitting viruses such as dengue, chikungunya, and Zika in modern US city environments.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.17-0676
2017-12-18
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/14761645/98/2/tpmd170676.html?itemId=/content/journals/10.4269/ajtmh.17-0676&mimeType=html&fmt=ahah

References

  1. Christophers SR, , 1960. Aedes aegypti (L.) the Yellow Fever Mosquito: Its Life History, Bionomics and Structure. New York, NY: Cambridge University Press.
  2. Lima A, Lovin DD, Hickner PV, Severson DW, , 2015. Evidence for an overwintering population of Aedes aegypti in Capitol Hill neighborhood, Washington, DC. Am J Trop Med Hyg 94: 231235. [Google Scholar]
  3. Patterson KD, , 1992. Yellow fever epidemics and mortality in the United States, 1693–1905. Soc Sci Med 34: 855865. [Google Scholar]
  4. Tabachnick WJ, Wallis GP, Aitken THG, Miller BR, Amato GD, Lorenz L, Powell JR, Beaty BJ, , 1985. Oral infection of Aedes aegypti with yellow fever virus: geographic variation and genetic considerations. Am J Trop Med Hyg 34: 12191224. [Google Scholar]
  5. Tesh RB, Gubler DJ, Rosen L, , 1976. Variation among goegraphic strains of Aedes albopictus in susceptibility to infection with chikungunya virus. Am J Trop Med Hyg 25: 326335. [Google Scholar]
  6. Bennett KE, Olson KE, Munoz M de L, Fernandez-Salas I, Farfan-Ale JA, Higgs S, Black WC, 4th Beaty BJ, , 2002. Variation in vector competence for dengue 2 virus among 24 collections of Aedes aegypti from Mexico and the United States. Am J Trop Med Hyg 67: 8592. [Google Scholar]
  7. Failloux A-B, Vazeille M, Rodhain F, , 2002. Geographic genetic variation in populations of the dengue virus vector Aedes aegypti. J Mol Evol 55: 653663. [Google Scholar]
  8. Gloria-Soria A, Armstrong PM, Powell JR, Turner PE, , 2017. Infection rate of Aedes aegypti mosquitoes with dengue virus depends on the interaction between temperature and mosquito genotype. Proc R Soc B Biol Sci 284: 1864. [Google Scholar]
  9. Chouin-Carneiro T, Vega-Rua A, Vazeille M, Yebakima A, Girod R, Goindin D, Dupont-Rouzeyrol M, LourenÁo-de-Oliveira R, Failloux A-B, , 2016. Differential Susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika virus. PLoS Negl Trop Dis 10: e0004543. [Google Scholar]
  10. Zouache K, Fontaine A, Vega-Rua A, Mousson L, Thiberge J-M, Lourenco-De-Oliveira R, Caro V, Lambrechts L, Failloux A-B, , 2014. Three-way interactions between mosquito population, viral strain and temperature underlying chikungunya virus transmission potential. Proc R Soc London B Biol Sci 281: 1792. doi:10.1098/rspb.2014.1078. [Google Scholar]
  11. Deming R, Manrique-Saide P, Barreiro AM, Cardeña EUK, Che-Mendoza A, Jones B, Liebman K, Vizcaino L, Vazquez-Prokopec G, Lenhart A, , 2016. Spatial variation of insecticide resistance in the dengue vector Aedes aegypti presents unique vector control challenges. Parasit Vectors 9: 67. [Google Scholar]
  12. Martins AJ, Lima JBP, Peixoto AA, Valle D, , 2009. Frequency of Val1016Ile mutation in the voltage‐gated sodium channel gene of Aedes aegypti Brazilian populations. Trop Med Int Health 14: 13511355. [Google Scholar]
  13. Linss JGB, Brito LP, Garcia GA, Araki AS, Bruno RV, Lima JP, Valle D, Martins AJ, , 2014. Distribution and dissemination of the Val1016Ile and Phe1534Cys Kdr mutations in Aedes aegypti Brazilian natural populations. Parasit Vectors 7: 25. [Google Scholar]
  14. Powell JR, Tabachnick WJ, Arnold J, , 1980. Genetics and the origin of a vector population: Aedes aegypti, a case study. Science 208: 13851387. [Google Scholar]
  15. Gloria-Soria A, 2016. Global genetic diversity of Aedes aegypti. Mol Ecol 25: 53775395. [Google Scholar]
  16. Brown JE, 2011. Worldwide patterns of genetic differentiation imply multiple “domestications” of Aedes aegypti, a major vector of human diseases. Proc Biol Sci 278: 24462454. [Google Scholar]
  17. Gloria-Soria A, Kellner DA, Brown JE, Gonzalez-Acosta C, Kamgang B, Lutwama J, Powell JR, , 2016. Temporal genetic stability of Stegomyia aegypti (= Aedes aegypti) populations. Med Vet Entomol 30: 235240. [Google Scholar]
  18. Brown JE, Scholte E-J, Dik M, Den Hartog W, Beeuwkes J, Powell JR, , 2011. Aedes aegypti mosquitoes imported into the Netherlands, 2010. Emerg Infect Dis 17: 23352337. [Google Scholar]
  19. Gloria-Soria A, Brown JE, Kramer V, Hardstone Yoshimizu M, Powell JR, , 2014. Origin of the dengue fever mosquito, Aedes aegypti, in California. PLoS Negl Trop Dis 8: e3029. [Google Scholar]
  20. Evans BR, Gloria-Soria A, Hou L, McBride C, Bonizzoni M, Zhao H, Powell JRA, , 2015. Multipurpose, high-throughput single-nucleotide polymorphism chip for the dengue and yellow fever mosquito, Aedes aegypti. G3 (Bethesda) 5: 711718. [Google Scholar]
  21. Kotsakiozi P, Gloria-Soria A, Caccone A, Evans B, Schama R, Martins AJ, Powell JR, , 2017. Tracking the return of Aedes aegypti to Brazil, the major vector of the dengue, chikungunya and Zika viruses. PLoS Negl Trop Dis 11: e0005653. [Google Scholar]
  22. Saarman NP, Gloria‐Soria A, Anderson EC, Evans BR, Pless E, Cosme L V, Gonzalez‐Acosta C, Kamgang B, Wesson DM, Powell JR, . Effective population sizes of a major vector of human diseases, Aedes aegypti. Evol Appl 10: 10311039. [Google Scholar]
  23. Pless E, Gloria-Soria A, Evans BR, Kramer V, Bolling BG, Tabachnick WJ, Powell JR, , 2017. Multiple introductions of the dengue vector, Aedes aegypti, into California. PLoS Negl Trop Dis 11: e0005718. [Google Scholar]
  24. Chang CC, Chow CC, Tellier LCAM, Vattikuti S, Purcell SM, Lee JJ, , 2015. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4: 7. [Google Scholar]
  25. Kalinowski ST, , 2005. hp-rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5: 187189. [Google Scholar]
  26. Peakall ROD, Smouse PE, , 2006. genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6: 288295. [Google Scholar]
  27. Pritchard JK, Wen W, Falush D, , 2003. Documentation for structure software: version 2. Available at: https://web.standford.edu/pritchardlab/structure/release_versions/v2.3.4/structure_doc.pdf.
  28. Pritchard JK, Stephens M, Donnelly P, , 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945959. [Google Scholar]
  29. Evanno G, Regnaut S, Goudet J, , 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14: 26112620. [Google Scholar]
  30. Earl DA, , 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4: 359361. [Google Scholar]
  31. Rosenberg NA, , 2004. DISTRUCT: a program for the graphical display of population structure. Mol Ecol Resour 4: 137138. [Google Scholar]
  32. Alexander DH, Lange K, , 2011. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinformatics 12: 246. [Google Scholar]
  33. Puechmaille SJ, , 2016. The program structure does not reliably recover the correct population structure when sampling is uneven: subsampling and new estimators alleviate the problem. Mol Ecol Resour 16: 608627. [Google Scholar]
  34. Wang J, , 2017. The computer program STRUCTURE for assigning individuals to populations: easy to use but easier to misuse. Mol Ecol Resour 17: 981990. [Google Scholar]
  35. Nazareno AG, Bemmels JB, Dick CW, Lohmann LG, , 2017. Minimum sample sizes for population genomics: an empirical study from an Amazonian plant species. Mol Ecol Resour 17: 11361147. [Google Scholar]
  36. Willing EVA, Bentzen P, Van Oosterhout C, Hoffmann M, Cable J, Breden F, Weigel D, Dreyer C, , 2010. Genome‐wide single nucleotide polymorphisms reveal population history and adaptive divergence in wild guppies. Mol Ecol 19: 968984. [Google Scholar]
  37. Piry S, Alapetite A, Cornuet J-M, Paetkau D, Baudouin L, Estoup A, , 2004. GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95: 536539. [Google Scholar]
  38. Rannala B, Mountain JL, , 1997. Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94: 91979201. [Google Scholar]
  39. Nei M, , 1973. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70: 33213323. [Google Scholar]
  40. Jombart T, , 2008. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24: 14031405. [Google Scholar]
  41. R Core Team, 2017. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Available at: https://www.r-project.org/. Accessed October 2017.
  42. Frichot E, François O, , 2015. LEA: an R package for landscape and ecological association studies. Methods Ecol Evol 6: 925929. [Google Scholar]
  43. Stamatakis A, , 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 13121313. [Google Scholar]
  44. Vrijenhoek R, , 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3: 294299. [Google Scholar]
  45. Sievers F, 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol Syst Biol 7: 539. [Google Scholar]
  46. Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, Lopez R, , 2010. A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 38 (Web Server issue): W695W699. [Google Scholar]
  47. Kumar S, Stecher G, Tamura K, , 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33: 18701874. [Google Scholar]
  48. Giraldo-Calderón GI, Emrich SJ, MacCallum RM, Maslen G, Dialynas E, Topalis P, Ho N, Gesing S, Madey G, Collins FH, , 2014. VectorBase: an updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases. Nucleic Acids Res 43: D707D713. [Google Scholar]
  49. VectorBase. National Institute of Allergy and Infectious Diseases (NIAID) Bioinformatics Resource Center (BRC). Available at: https://www.vectorbase.org/. Accessed October 2017.
  50. Radke EG, 2012. Dengue outbreak in Key West, Florida, USA, 2009. Emerg Infect Dis 18: 135137. [Google Scholar]
  51. CDC, 2017. Centers for Disease Control and Prevention (United States Government). Available at: https://www.cdc.gov/. Accessed July 26, 2017.
  52. Beach M, River L, , 2017. Genomic epidemiology reveals multiple introductions of Zika virus into the United States. Nature 546: 401405. [Google Scholar]
  53. Disease Maps Dynamic Map Viewer, 2015. United States Geological Survey (USGS). U.S. Department of Interior. Available at: https://diseasemaps.usgs.gov/. Accessed July 26, 2017.
  54. Paploski IAD, Rodrigues MS, Mugabe VA, Kikuti M, Tavares AS, Reis MG, Kitron U, Ribeiro GS, , 2016. Storm drains as larval development and adult resting sites for Aedes aegypti and Aedes albopictus in Salvador, Brazil. Parasit Vectors 9: 419. [Google Scholar]
  55. Manrique-Saide P, Uc V, Prado C, Carmona C, Vadillo J, Chan R, Dzib-Florez S, Che-Mendoza A, Barrera-Perez M, Sanchez EC, , 2012. Storm sewers as larval habitats for Aedes aegypti and Culex spp. in a neighborhood of Merida, Mexico. J Am Mosq Control Assoc 28: 255257. [Google Scholar]
  56. Metzger ME, Hardstone Yoshimizu M, Padgett KA, Hu R, Kramer VL, , 2017. Detection and establishment of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) mosquitoes in California, 2011–2015. J Med Entomol 54: 533543. [Google Scholar]
  57. Barrera R, Amador M, Diaz A, Smith J, Munoz-Jordan JL, Rosario Y, , 2008. Unusual productivity of Aedes aegypti in septic tanks and its implications for dengue control. Med Vet Entomol 22: 6269. [Google Scholar]
  58. Chadee DD, Martinez R, , 2016. Aedes aegypti (L.) in Latin American and Caribbean region: with growing evidence for vector adaptation to climate change? Acta Trop 156: 137143. [Google Scholar]
  59. Mackay AJ, Amador M, Diaz A, Smith J, Barrera R, , 2009. Dynamics of Aedes aegypti and Culex quinquefasciatus in septic tanks. J Am Mosq Control Assoc 25: 409416. [Google Scholar]
  60. Somers G, Brown JE, Barrera R, Powell JR, , 2011. Genetics and morphology of Aedes aegypti (Diptera: Culicidae) in septic tanks in Puerto Rico. J Med Entomol 48: 10951102. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.17-0676
Loading
/content/journals/10.4269/ajtmh.17-0676
Loading

Data & Media loading...

Supplemental Figure and Table

  • Received : 25 Aug 2017
  • Accepted : 31 Oct 2017
  • Published online : 18 Dec 2017

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error