Volume 98, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



is a protozoan of great importance to public health: it has infected millions of people in the world and is the etiologic agent of Chagas disease, which can cause cardiac and gastrointestinal disorders in patients and may even lead to death. The main vector of transmission of this parasite is triatomine bugs, which have a habit of defecating while feeding on blood and passing the parasite to their own hosts through their feces. Although it has been argued that is not pathogenic for this vector, other studies indicate that the success of the infection depends on several molecules and factors, including the insect’s intestinal microbiota, which may experience changes as a result of infection that include decreased fitness. Moreover, the effects of infection depend on the insect species, the parasite strain, and environmental conditions involved. However, the parasite–vector interaction is still underexplored. A deeper understanding of this relationship is an important tool for discovering new approaches to transmission and Chagas disease.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Chagas C, , 1909. Nova tripanozomiaze humana: estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., ajente etiolojico de nova entidade morbida do homem. Mem Inst Oswaldo Cruz 1: 159218. [Google Scholar]
  2. Liñares GEG, Ravaschino EL, Rodriguez JB, , 2006. Progresses in the field of drug design to combat tropical protozoan parasitic diseases. Curr Med Chem 13: 335360. [Google Scholar]
  3. World Health Organization, 2015. Chagas disease (American trypanosomiasis). Wkly Epidemiol Rec 90: 3344. [Google Scholar]
  4. Rassi A, Jr Marin-Neto JA, , 2010. Chagas disease. Lancet 375: 13881402. [Google Scholar]
  5. Rodriguez JB, Falcone BN, Szajnman SH, , 2016. Detection and treatment of Trypanosoma cruzi: a patent review (2011–2015). Expert Opin Ther Pat 26: 9931015. [Google Scholar]
  6. Soriano-Arandes A, Angheben A, Serre-Delcor N, Treviño-Maruri B, Gomez i Prat J, Jackson Y, , 2016. Control and management of congenital Chagas disease in Europe and other non-endemic countries: current policies and practices. Trop Med Int Health 21: 590596. [Google Scholar]
  7. Angheben A, Boix L, Buonfrate D, Gobbi F, Bisoffi Z, Pupella S, Gandini G, Aprili G, , 2015. Chagas disease and transfusion medicine: a perspective from non-endemic countries. Blood Transfus 13: 540550. [Google Scholar]
  8. Howard EJ, Xiong X, Carlier Y, Sosa-Estani S, Buekens P, , 2014. Frequency of the congenital transmission of Trypanosoma cruzi: a systematic review and meta-analysis. BJOG An Int J Obstet Gynaecol 121: 2233. [Google Scholar]
  9. Feder D, Gomes SAO, Freitas SC, Santos-Machado G, Santos-Mallet JR, , 2014. The ultrastructural studies in parasite-vectors interactions. Méndez-Vilas A, ed. Microscopy: Advances in Scientific Research and Education. Spain: Formatex Research Center, 564–569.
  10. Jurberg J, Galvão C, , 2006. Biology, ecology, and systematics of Triatominae (Heteroptera, Reduviidae), vectors of Chagas disease, and implications for human health. Biol Linz 50: 10961116. [Google Scholar]
  11. Galvão C, , 2014. Vetores Da Doença de Chagas No Brasil. Curitiba, Brazil: Sociedade Brasileira de Zoologia.
  12. Alevi KCC, Reis YV, Guerra AL, Imperador CHL, Banho CA, Moreira FFF, Azeredo-Oliveira MTV, , 2016. Would Nesotriatoma bruneri Usinger, 1944 be a valid species? Zootaxa 4103: 396400. [Google Scholar]
  13. Mendonça VJ, Alevi KCC, Pinotti H, Gurgel-Goncalves R, Pita S, Guerra AL, Panzera F, Araujo RF, Azeredo-Oliveira MTV, Da Rosa JA, , 2016. Revalidation of Triatoma bahiensis Sherlock & Serafim, 1967 (Hemiptera: Reduviidae) and phylogeny of the T. brasiliensis species complex. Zootaxa 4107: 239254. [Google Scholar]
  14. Souza ES, Von Atzingen NCB, Furtado MB, Oliveira J, Nascimento JD, Vendrami DP, Gardim S, Rosa JA, , 2016. Description of Rhodnius marabaensis sp. n. (Hemiptera, Reduviidae, Triatominae) from Pará State, Brazil. ZooKeys 621: 4562. [Google Scholar]
  15. Rosa JA, Justino HHG, Nascimento JD, Mendonça VJ, Rocha CS, de Carvalho DB, Falcone R, Oliveira MTVA, Alevi KCC, de Oliveira J, , 2017. A new species of Rhodnius from Brazil (Hemiptera, Reduviidae, Triatominae). ZooKeys 675: 125. [Google Scholar]
  16. Perlowagora-Szumlewicz A, Muller CA, Moreira CJC, , 1990. Studies in search of a suitable experimental insect model for xenodiagnosis of hosts with chagas’ disease 4—the reflection of parasite stock in the responsiveness of different vector species to chronic infection with different Trypanosoma cruzi stocks. Rev Saude Publica 24: 165177. [Google Scholar]
  17. Zingales B, 2012. The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infect Genet Evol 12: 240253. [Google Scholar]
  18. Marcili A, Lima L, Cavazzana M, Junqueira AC, Veludo HH, Maia Da Silva F, Campaner M, Paiva F, Nunes VL, Teixeira MM, , 2009. A new genotype of Trypanosoma cruzi associated with bats evidenced by phylogenetic analyses using SSU rDNA, cytochrome b and Histone H2B genes and genotyping based on ITS1 rDNA. Parasitology 136: 641655. [Google Scholar]
  19. Zingales B, 2009. A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz 104: 10511054. [Google Scholar]
  20. Lima MM, Pereira JB, Santos JAA, Pinto ZT, Braga MV, , 1992. Development and reproduction of Panstrongylus megistus (Hemiptera: Reduviidae) infected with Trypanosoma cruzi, under laboratory conditions. Ann Entomol Soc Am 85: 458461. [Google Scholar]
  21. Fellet MR, Lorenzo MG, Elliot SL, Carrasco D, Guarneri AA, , 2014. Effects of infection by Trypanosoma cruzi and Trypanosoma rangeli on the reproductive performance of the vector Rhodnius prolixus. PLoS One 9: 2632. [Google Scholar]
  22. Gumiel M, Mota FF, Rizzo VS, Sarquis O, Castro DP, Lima MM, Garcia ES, Carels N, Azambuja P, , 2015. Characterization of the microbiota in the guts of Triatoma brasiliensis and Triatoma pseudomaculata infected by Trypanosoma cruzi in natural conditions using culture independent methods. Parasit Vectors 8: 117. [Google Scholar]
  23. Buarque DS, Gomes CM, Araújo RN, Pereira MH, Ferreira RC, Guarneri AA, Tanaka AS, , 2016. A new antimicrobial protein from the anterior midgut of Triatoma infestans mediates Trypanosoma cruzi establishment by controlling the microbiota. Biochimie 123: 138143. [Google Scholar]
  24. Mesquita RD, 2016. Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection. Proc Natl Acad Sci USA 113: 1493614941. [Google Scholar]
  25. Dias FA, 2015. Monitoring of the parasite load in the digestive tract of Rhodnius prolixus by combined qPCR analysis and imaging techniques provides new insights into the trypanosome life cycle. PLoS Negl Trop Dis 9: 123. [Google Scholar]
  26. Nogueira NP, 2015. Proliferation and differentiation of Trypanosoma cruzi inside its vector have a new trigger: redox status. PLoS One 10: 116. [Google Scholar]
  27. Lara FA, 2007. Heme requirement and intracellular trafficking in Trypanosoma cruzi epimastigotes. Biochem Biophys Res Commun 355: 1622. [Google Scholar]
  28. Paes MC, Cosentino-Gomes D, de Souza CF, Nogueira NP, Meyer-Fernandes JR, , 2011. The role of heme and reactive oxygen species in proliferation and survival of Trypanosoma cruzi. J Parasitol Res 2011: 18. [Google Scholar]
  29. Schaub GA, Lösch P, , 1988. Trypanosoma cruzi: origin of metacyclic trypomastigotes in the urine of the vector Triatoma infestans. Exp Parasitol 65: 174186. [Google Scholar]
  30. Schaub GA, , 1988. Developmental time and mortality with Trypanosoma cruzi of larvae of Triatoma infestans infected. Trans R Soc Med Hyg 82: 9496. [Google Scholar]
  31. Kollien AH, Schmidt J, Schaub GA, , 1998. Modes of association of Trypanosoma cruzi with the intestinal tract of the vector Triatoma infestans. Acta Trop 70: 127141. [Google Scholar]
  32. Botto-Mahan C, Cattan PE, Medel R, , 2006. Chagas disease parasite induces behavioural changes in the kissing bug Mepraia spinolai. Acta Trop 98: 219223. [Google Scholar]
  33. Guarneri AA, Lorenzo MG, , 2017. Triatomine physiology in the context of trypanosome infection. J Insect Physiol 97: 6676. [Google Scholar]
  34. Nouvellet P, Ramirez-Sierra MJ, Dumonteil E, Gourbière S, , 2011. Effects of genetic factors and infection status on wing morphology of Triatoma dimidiata species complex in the Yucatán peninsula, Mexico. Infect Genet Evol 11: 12431249. [Google Scholar]
  35. Cortez MR, Provençano A, Silva CE, Mello CB, Zimmermann LT, Schaub GA, Garcia ES, Azambuja P, Gonzalez MS, , 2012. Trypanosoma cruzi: effects of azadirachtin and ecdysone on the dynamic development in Rhodnius prolixus larvae. Exp Parasitol 131: 363371. [Google Scholar]
  36. Azambuja P, Garcia ES, , 1992. Effects of azadirachtin on Rhodnius prolixus: immunity and Trypanosoma interaction. Mem Inst Oswaldo Cruz 87: 6972. [Google Scholar]
  37. Garcia ES, Genta FA, Azambuja P, Schaub GA, , 2010. Interactions between intestinal compounds of triatomines and Trypanosoma cruzi. Trends Parasitol 26: 499505. [Google Scholar]
  38. Caradonna KL, Engel JC, Jacobi D, Lee CH, Burleigh BA, , 2013. Host metabolism regulates intracellular growth of Trypanosoma cruzi. Cell Host Microbe 13: 108117. [Google Scholar]
  39. Gourbière S, Dorn P, Tripet F, Dumonteil E, , 2012. Genetics and evolution of triatomines: from phylogeny to vector control. Heredity 108: 190202. [Google Scholar]
  • Received : 18 Aug 2017
  • Accepted : 21 Nov 2017
  • Published online : 07 Mar 2018

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error