1921
Volume 98, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

To evaluate the dynamics of regulatory T cells (Tregs) during tegumentary leishmaniasis, we assessed peripheral blood and biopsies from 54 patients. Patients with cutaneous leishmaniasis (CL) had a decreased proportion of Tregs in the peripheral blood, but the proportion was higher in the biopsies of lesions. During treatment of CL, circulating Tregs increased reaching normal proportions, whereas antigen-specific interferon-γ responses diminished. By contrast, circulating Tregs from mucosal leishmaniasis patients failed to normalize during treatment. C-C chemokine receptor type 5 was expressed on a large proportion of Tregs at the site of infection. These results demonstrate increased Tregs at the site of infection, possibly homing from the peripheral circulation.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.17-0624
2018-02-05
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/14761645/98/3/tpmd170624.html?itemId=/content/journals/10.4269/ajtmh.17-0624&mimeType=html&fmt=ahah

References

  1. Murray HW, Berman JD, Davies CR, Saravia NG, , 2005. Advances in leishmaniasis. Lancet 366: 15611577. [Google Scholar]
  2. Llanos-Cuentas A, 2008. Clinical and parasite species risk factors for pentavalent antimonial treatment failure in cutaneous leishmaniasis in Peru. Clin Infect Dis 46: 223231. [Google Scholar]
  3. Reithinger R, Dujardin JC, Louzir H, Pirmez C, Alexander B, Brooker S, , 2007. Cutaneous leishmaniasis. Lancet Infect Dis 7: 581596. [Google Scholar]
  4. Belkaid Y, , 2007. Regulatory T cells and infection: a dangerous necessity. Nat Rev Immunol 7: 875888. [Google Scholar]
  5. Rudensky AY, , 2011. Regulatory T cells and Foxp3. Immunol Rev 241: 260268. [Google Scholar]
  6. Campbell DJ, Koch MA, , 2011. Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nat Rev Immunol 11: 119130. [Google Scholar]
  7. Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL, , 2002. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420: 502507. [Google Scholar]
  8. Mendez S, Reckling SK, Piccirillo CA, Sacks D, Belkaid Y, , 2004. Role for CD4(+) CD25(+) regulatory T cells in reactivation of persistent leishmaniasis and control of concomitant immunity. J Exp Med 200: 201210. [Google Scholar]
  9. Suffia IJ, Reckling SK, Piccirillo CA, Goldszmid RS, Belkaid Y, , 2006. Infected site-restricted Foxp3+ natural regulatory T cells are specific for microbial antigens. J Exp Med 203: 777788. [Google Scholar]
  10. Xu D, Liu H, Komai-Koma M, Campbell C, McSharry C, Alexander J, Liew FY, , 2003. CD4+CD25+ regulatory T cells suppress differentiation and functions of Th1 and Th2 cells, Leishmania major infection, and colitis in mice. J Immunol 170: 394399. [Google Scholar]
  11. Sacks D, Noben-Trauth N, , 2002. The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2: 845858. [Google Scholar]
  12. Ji J, Masterson J, Sun J, Soong L, , 2005. CD4+CD25+ regulatory T cells restrain pathogenic responses during Leishmania amazonensis infection. J Immunol 174: 71477153. [Google Scholar]
  13. Campanelli AP, 2006. CD4+CD25+ T cells in skin lesions of patients with cutaneous leishmaniasis exhibit phenotypic and functional characteristics of natural regulatory T cells. J Infect Dis 193: 13131322. [Google Scholar]
  14. Bourreau E, Ronet C, Darcissac E, Lise MC, Sainte Marie D, Clity E, Tacchini-Cottier F, Couppie P, Launois P, , 2009. Intralesional regulatory T-cell suppressive function during human acute and chronic cutaneous leishmaniasis due to Leishmania guyanensis. Infect Immun 77: 14651474. [Google Scholar]
  15. Nylen S, Maurya R, Eidsmo L, Manandhar KD, Sundar S, Sacks D, , 2007. Splenic accumulation of IL-10 mRNA in T cells distinct from CD4+CD25+ (Foxp3) regulatory T cells in human visceral leishmaniasis. J Exp Med 204: 805817. [Google Scholar]
  16. Teixeira MJ, Teixeira CR, Andrade BB, Barral-Netto M, Barral A, , 2006. Chemokines in host-parasite interactions in leishmaniasis. Trends Parasitol 22: 3240. [Google Scholar]
  17. Handman E, Bullen DV, , 2002. Interaction of Leishmania with the host macrophage. Trends Parasitol 18: 332334. [Google Scholar]
  18. Oghumu S, Lezama-Davila CM, Isaac-Marquez AP, Satoskar AR, , 2010. Role of chemokines in regulation of immunity against leishmaniasis. Exp Parasitol 126: 389396. [Google Scholar]
  19. Sharma M, , 2010. Chemokines and their receptors: orchestrating a fine balance between health and disease. Crit Rev Biotechnol 30: 122. [Google Scholar]
  20. Mailloux AW, Young MR, , 2010. Regulatory T-cell trafficking: from thymic development to tumor-induced immune suppression. Crit Rev Immunol 30: 435447. [Google Scholar]
  21. Moreira AP, Cavassani KA, Massafera Tristao FS, Campanelli AP, Martinez R, Rossi MA, Silva JS, , 2008. CCR5-dependent regulatory T cell migration mediates fungal survival and severe immunosuppression. J Immunol 180: 30493056. [Google Scholar]
  22. Tan MC, Goedegebuure PS, Belt BA, Flaherty B, Sankpal N, Gillanders WE, Eberlein TJ, Hsieh CS, Linehan DC, , 2009. Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer. J Immunol 182: 17461755. [Google Scholar]
  23. Dobaczewski M, Xia Y, Bujak M, Gonzalez-Quesada C, Frangogiannis NG, , 2010. CCR5 signaling suppresses inflammation and reduces adverse remodeling of the infarcted heart, mediating recruitment of regulatory T cells. Am J Pathol 176: 21772187. [Google Scholar]
  24. Yurchenko E, Tritt M, Hay V, Shevach EM, Belkaid Y, Piccirillo CA, , 2006. CCR5-dependent homing of naturally occurring CD4+ regulatory T cells to sites of Leishmania major infection favors pathogen persistence. J Exp Med 203: 24512460. [Google Scholar]
  25. Sato N, Kuziel WA, Melby PC, Reddick RL, Kostecki V, Zhao W, Maeda N, Ahuja SK, Ahuja SS, , 1999. Defects in the generation of IFN-gamma are overcome to control infection with Leishmania donovani in CC chemokine receptor (CCR) 5-, macrophage inflammatory protein-1 alpha-, or CCR2-deficient mice. J Immunol 163: 55195525. [Google Scholar]
  26. Brajao de Oliveira K, Reiche EM, Kaminami Morimoto H, Pelegrinelli Fungaro MH, Estevao D, Pontello R, Franco Nasser T, Watanabe MA, , 2007. Analysis of the CC chemokine receptor 5 delta32 polymorphism in a Brazilian population with cutaneous leishmaniasis. J Cutan Pathol 34: 2732. [Google Scholar]
  27. Botelho AC, Mayrink W, Oliveira RC, , 2009. Alterations in phenotypic profiles of peripheral blood cells from patients with human American cutaneous leishmaniasis following treatment with an antimonial drug and a vaccine. Acta Trop 112: 143148. [Google Scholar]
  28. Reis LC, Brito ME, Souza MA, Medeiros AC, Silva CJ, Luna CF, Pereira VR, , 2009. Cellular immune response profile in patients with American tegumentary leishmaniasis prior and post chemotherapy treatment. J Clin Lab Anal 23: 6369. [Google Scholar]
  29. Coutinho SG, Pirmez C, Da-Cruz AM, , 2002. Parasitological and immunological follow-up of American tegumentary leishmaniasis patients. Trans R Soc Trop Med Hyg 96 (Suppl 1): S173S178. [Google Scholar]
  30. Veland N, Boggild AK, Valencia C, Valencia BM, Llanos-Cuentas A, Van der Auwera G, Dujardin JC, Arevalo J, , 2012. Leishmania (Viannia) species identification on clinical samples from cutaneous leishmaniasis patients in Peru: assessment of a molecular stepwise approach. J Clin Microbiol 50: 495498. [Google Scholar]
  31. Scott P, Pearce E, Natovitz P, Sher A, , 1987. Vaccination against cutaneous leishmaniasis in a murine model. I. Induction of protective immunity with a soluble extract of promastigotes. J Immunol 139: 221227. [Google Scholar]
  32. Carvalho LP, Passos S, Bacellar O, Lessa M, Almeida RP, Magalhaes A, Dutra WO, Gollob KJ, Machado P, de Jesus AR, , 2007. Differential immune regulation of activated T cells between cutaneous and mucosal leishmaniasis as a model for pathogenesis. Parasite Immunol 29: 251258. [Google Scholar]
  33. Tuon FF, Gomes-Silva A, Da-Cruz AM, Duarte MI, Neto VA, Amato VS, , 2008. Local immunological factors associated with recurrence of mucosal leishmaniasis. Clin Immunol 128: 442446. [Google Scholar]
  34. Salhi A, 2008. Immunological and genetic evidence for a crucial role of IL-10 in cutaneous lesions in humans infected with Leishmania braziliensis. J Immunol 180: 61396148. [Google Scholar]
  35. Castellano LR, Filho DC, Argiro L, Dessein H, Prata A, Dessein A, Rodrigues V, , 2009. Th1/Th2 immune responses are associated with active cutaneous leishmaniasis and clinical cure is associated with strong interferon-gamma production. Hum Immunol 70: 383390. [Google Scholar]
  36. Bourreau E, Prevot G, Gardon J, Pradinaud R, Launois P, , 2001. High intralesional interleukin-10 messenger RNA expression in localized cutaneous leishmaniasis is associated with unresponsiveness to treatment. J Infect Dis 184: 16281630. [Google Scholar]
  37. Bourreau E, Ronet C, Darsissac E, Lise MC, Marie DS, Clity E, Tacchini-Cottier F, Couppie P, Launois P, , 2009. In leishmaniasis due to Leishmania guyanensis infection, distinct intralesional interleukin-10 and Foxp3 mRNA expression are associated with unresponsiveness to treatment. J Infect Dis 199: 576579. [Google Scholar]
  38. Tripathi P, Singh V, Naik S, , 2007. Immune response to Leishmania: paradox rather than paradigm. FEMS Immunol Med Microbiol 51: 229242. [Google Scholar]
  39. Kaye P, Scott P, , 2011. Leishmaniasis: complexity at the host-pathogen interface. Nat Rev Microbiol 9: 604615. [Google Scholar]
  40. Mougneau E, Bihl F, Glaichenhaus N, , 2011. Cell biology and immunology of Leishmania. Immunol Rev 240: 286296. [Google Scholar]
  41. Da-Cruz AM, Bittar R, Mattos M, Oliveira-Neto MP, Nogueira R, Pinho-Ribeiro V, Azeredo-Coutinho RB, Coutinho SG, , 2002. T-cell-mediated immune responses in patients with cutaneous or mucosal leishmaniasis: long-term evaluation after therapy. Clin Diagn Lab Immunol 9: 251256. [Google Scholar]
  42. Anderson CF, Oukka M, Kuchroo VJ, Sacks D, , 2007. CD4(+)CD25(-)Foxp3(-) Th1 cells are the source of IL-10-mediated immune suppression in chronic cutaneous leishmaniasis. J Exp Med 204: 285297. [Google Scholar]
  43. Pagan AJ, Peters NC, Debrabant A, Ribeiro-Gomes F, Pepper M, Karp CL, Jenkins MK, Sacks DL, , 2013. Tracking antigen-specific CD4+ T cells throughout the course of chronic Leishmania major infection in resistant mice. Eur J Immunol 43: 427438. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.17-0624
Loading
/content/journals/10.4269/ajtmh.17-0624
Loading

Data & Media loading...

  • Received : 04 Aug 2017
  • Accepted : 13 Nov 2017
  • Published online : 05 Feb 2018

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error