1921
Volume 98, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

The genetic diversity of glutamate-rich protein () R2 region in isolates collected before and 12 years after the introduction of artemisinin combination treatment of malaria in Osogbo, Osun State, Nigeria, was compared in this study. Blood samples were collected on filter paper in 2004 and 2015 from febrile children from ages 1–12 years. The R2 region of the gene was genotyped using nested polymerase chain reaction and by nucleotide sequencing. In all, 12 alleles were observed in a total of 199 samples collected in the two study years. The multiplicity of infection (MOI) marginally increased over the two study years; however, the differences were statistically insignificant (2004 samples MOI = 1.23 versus 2015 samples MOI = 1.47). Some alleles were stable in their prevalence, whereas two alleles, VIII and XI, showed considerable variability between both years. This variability was replicated when sequences from other regions were compared with ours. The expected heterozygosity () values ( = 0.87) were identical for the two groups. High variability in the rearrangement of the amino acid repeat units in the R2 region were observed, with the amino acid repeat sequence DKNEKGQHEIVEVEEILPE more prevalent in both years, compared with the two other repeat sequences observed in the study. The parasite population characterized in this study displayed extensive genetic diversity. The detailed genetic profile of the R2 region has the potential to help guide further epidemiological studies aimed toward the rational design of novel chemotherapies that are antagonistic toward malaria.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.17-0621
2018-01-22
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/14761645/98/3/tpmd170621.html?itemId=/content/journals/10.4269/ajtmh.17-0621&mimeType=html&fmt=ahah

References

  1. WHO, 2016. World Malaria Report 2016, 148. Available at: http://www.who.int/malaria/publications/world-malaria-report-2016/report/en/. Accessed July 7, 2017.
  2. Ojurongbe O, Akindele A, Adedokun S, Thomas B, , 2016. Malaria: control, elimination, and eradication. Hum Parasit Dis 8: 1115. [Google Scholar]
  3. Kana IH, Adu B, Tiendrebeogo RW, Singh SK, Dodoo D, Theisen M, , 2017. Naturally acquired antibodies target the glutamate-rich protein on intact merozoites and predict protection against febrile malaria. J Infect Dis 215: 623630. [Google Scholar]
  4. Agnandji ST, RTS,S Clinical Trials Partnership.; , 2012. A phase 3 trial of RTS,S/AS01 malaria vaccine in African infants. N Engl J Med 367: 22842295. [Google Scholar]
  5. Theisen M, Soe S, Brunstedt K, Follmann F, Bredmose L, Israelsen H, Madsen SM, Druilhe P, , 2004. A Plasmodium falciparum GLURP-MSP3 chimeric protein; expression in Lactococcus lactis, immunogenicity and induction of biologically active antibodies. Vaccine 22: 11881198. [Google Scholar]
  6. Borre MB, Dziegiel M, Høgh B, Petersen E, Rieneck K, Riley E, Meis JF, Aikawa M, Nakamura K, Harada M, , 1991. Primary structure and localization of a conserved immunogenic Plasmodium falciparum glutamate rich protein (GLURP) expressed in both the preerythrocytic and erythrocytic stages of the vertebrate life cycle. Mol Biochem Parasitol 49: 119131. [Google Scholar]
  7. Theisen M, Soe S, Oeuvray C, Thomas AW, Vuust J, Danielsen S, Jepsen S, Druilhe P, , 1998. The glutamate-rich protein (GLURP) of Plasmodium falciparum is a target for antibody-dependent monocyte-mediated inhibition of parasite growth in vitro. Infect Immun 66: 1117. [Google Scholar]
  8. Theisen M, Vuust J, Gottschau A, Jepsen S, Høgh B, , 1995. Antigenicity and immunogenicity of recombinant glutamate-rich protein of Plasmodium falciparum expressed in Escherichia coli. Clin Diagn Lab Immunol 2: 3034. [Google Scholar]
  9. Dodoo D, Theisen M, Kurtzhals JA, Akanmori BD, Koram KA, Jepsen S, Nkrumah FK, Theander TG, Hviid L, , 2000. Naturally acquired antibodies to the glutamate-rich protein are associated with protection against Plasmodium falciparum malaria. J Infect Dis 181: 12021205. [Google Scholar]
  10. Mamo H, Esen M, Ajua A, Theisen M, Mordmüller B, Petros B, , 2013. Humoral immune response to Plasmodium falciparum vaccine candidate GMZ2 and its components in populations naturally exposed to seasonal malaria in Ethiopia. Malar J 12: 51. [Google Scholar]
  11. Theisen M, ., 2001. Selection of glutamate-rich protein long synthetic peptides for vaccine development: antigenicity and relationship with clinical protection and immunogenicity. Infect Immun 69: 52235229. [Google Scholar]
  12. Adu B, ., 2016. Antibody levels against GLURP R2, MSP1 block 2 hybrid and AS202.11 and the risk of malaria in children living in hyperendemic (Burkina Faso) and hypo-endemic (Ghana) areas. Malar J 15: 123. [Google Scholar]
  13. Meraldi V, Nebié I, Tiono AB, Diallo D, Sanogo E, Theisen M, Druilhe P, Corradin G, Moret R, Sirima BS, , 2004. Natural antibody response to Plasmodium falciparum Exp-1, MSP-3 and GLURP long synthetic peptides and association with protection. Parasite Immunol 26: 265272. [Google Scholar]
  14. Pratt-Riccio LR, Perce-da-Silva Dde S, Lima-Junior JC, Theisen M, Santos F, Daniel-Ribeiro CT, de Oliveira-Ferreira J, Banic DM, , 2013. Genetic polymorphisms in the glutamate-rich protein of Plasmodium falciparum field isolates from a malaria-endemic area of Brazil. Mem Inst Oswaldo Cruz 108: 523528. [Google Scholar]
  15. A-Elbasit IE, A-Elgadir TME, Elghazali G, Elbashir MI, Giha HA, , 2007. Genetic fingerprints of parasites causing severe malaria in a setting of low transmission in Sudan. J Mol Microbiol Biotechnol 13: 8995. [Google Scholar]
  16. Mlambo G, Sullivan D, Mutambu SL, Soko W, Mbedzi J, Chivenga J, Jaenisch T, Gemperli A, Kumar N, , 2007. Analysis of genetic polymorphism in select vaccine candidate antigens and microsatellite loci in Plasmodium falciparum from endemic areas at varying altitudes. Acta Trop 102: 201205. [Google Scholar]
  17. Montoya L, Maestre A, Carmona J, Lopes D, Do Rosario V, Blair S, , 2003. Plasmodium falciparum: diversity studies of isolates from two Colombian regions with different endemicity. Exp Parasitol 104: 1419. [Google Scholar]
  18. Gandhi K, Thera MA, Coulibaly D, Traoré K, Guindo AB, Ouattara A, Takala-Harrison S, Berry AA, Doumbo OK, Plowe CV, , 2014. Variation in the circumsporozoite protein of Plasmodium falciparum: vaccine development implications. PLoS ONE 9: e101783. [Google Scholar]
  19. Ocholla H, ., 2014. Whole-genome scans provide evidence of adaptive evolution in Malawian Plasmodium falciparum isolates. J Infect Dis. 210: 19912000. [Google Scholar]
  20. Dechavanne C, ., 2017. Associations between an IgG3 polymorphism in the binding domain for FcRn, transplacental transfer of malaria-specific IgG3, and protection against Plasmodium falciparum malaria during infancy: a birth cohort study in Benin. PLOS Med 14: e1002403. [Google Scholar]
  21. Vardo-Zalik AM, Zhou G, Zhong D, Afrane YA, Githeko AK, Yan G, , 2013. Alterations in Plasmodium falciparum genetic structure two years after increased malaria control efforts in western Kenya. Am J Trop Med Hyg 88: 2936. [Google Scholar]
  22. Escalante AA, ., 2015. Malaria molecular epidemiology: lessons from the international centers of excellence for malaria research network. Am J Trop Med Hyg 93 (3 Suppl): 7986. [Google Scholar]
  23. Laufer MK, Plowe CV, , 2004. Withdrawing antimalarial drugs: impact on parasite resistance and implications for malaria treatment policies. Drug Resist Updat 7: 279288. [Google Scholar]
  24. Mohd Abd Razak MR, ., 2016. Genetic diversity of Plasmodium falciparum populations in malaria declining areas of Sabah, east Malaysia. PLoS One 11: e0152415. [Google Scholar]
  25. Ojurongbe O, Ogungbamigbe TO, Fagbenro-Beyioku AF, Fendel R, Kremsner PG, Kun JF, , 2007. Rapid detection of Pfcrt and Pfmdr1 mutations in Plasmodium falciparum isolates by FRET and in vivo response to chloroquine among children from Osogbo, Nigeria. Malar J 6: 41. [Google Scholar]
  26. Snounou G, Viriyakosol S, Zhu XP, Jarra W, Pinheiro L, do Rosario VE, Thaithong S, Brown KN, , 1993. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol 61: 315320. [Google Scholar]
  27. Felger I, Snounou G, , 2007. Recommended Genotyping Procedures (RGPs) to Identify Parasite Populations. Available at: http://www.who.int/malaria/publications/atoz/rgptext_sti.pdf?ua=1. Accessed February 6, 2017.
  28. Mwingira F, Nkwengulila G, Schoepflin S, Sumari D, Beck H-P, Snounou G, Felger I, Olliaro P, Mugittu K, , 2011. Plasmodium falciparum msp1, msp2 and glurp allele frequency and diversity in sub-Saharan Africa. Malar J 10: 79. [Google Scholar]
  29. Kumar S, Stecher G, Tamura K, , 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33: 18701874. [Google Scholar]
  30. Rozas J, , 2009. DNA sequence polymorphism analysis using DnaSP. Posada D, ed. Bioinformatics for DNA Sequence Analysis; Methods in Molecular Biology Series. Totowa, NJ: Humana Press.
  31. Tajima F, , 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585595. [Google Scholar]
  32. Fu YX, Li WH, , 1993. Statistical tests of neutrality of mutations. Genetics 133: 693709. [Google Scholar]
  33. Turner L, Wang CW, Lavstsen T, Mwakalinga SB, Sauerwein RW, Hermsen CC, Theander TG, , 2011. Antibodies against PfEMP1, RIFIN, MSP3 and GLURP are acquired during controlled Plasmodium falciparum malaria infections in naive volunteers. PLoS One 6: e29025. [Google Scholar]
  34. Duru KC, Thomas BN, , 2014. Genetic diversity and allelic frequency of glutamate-rich protein (GLURP) in Plasmodium falciparum isolates from sub-Saharan Africa. Microbiol Insights 7: 3539. [Google Scholar]
  35. Ojurongbe O, Fagbenro-Beyioku AF, Adeyeba OA, Kun JF, , 2011. Allelic diversity of merozoite surface protein 2 gene of P. falciparum among children in Osogbo, Nigeria. West Indian Med J 60: 1923. [Google Scholar]
  36. Conway DJ, , 2007. Molecular epidemiology of malaria. Clin Microbiol Rev 20: 188204. [Google Scholar]
  37. Yuan L, ., 2013. Plasmodium falciparum populations from northeastern Myanmar display high levels of genetic diversity at multiple antigenic loci. Acta Trop 125: 5359. [Google Scholar]
  38. Kumar D, Dhiman S, Rabha B, Goswami D, Deka M, Singh L, Baruah I, Veer V, , 2014. Genetic polymorphism and amino acid sequence variation in Plasmodium falciparum GLURP R2 repeat region in Assam, India, at an interval of five years. Malar J 13: 450. [Google Scholar]
  39. Jongwutiwes S, Putaporntip C, Hughes AL, , 2010. Bottleneck effects on vaccine-candidate antigen diversity of malaria parasites in Thailand. Vaccine 28: 31123117. [Google Scholar]
  40. Robert F, Ntoumi F, Angel G, Candito D, Rogier C, Fandeur T, Sarthou JL, Mercereau-Puijalon O, , 1996. Extensive genetic diversity of Plasmodium falciparum isolates collected from patients with severe malaria in Dakar, Senegal. Trans R Soc Trop Med Hyg 90: 704711. [Google Scholar]
  41. de Stricker K, Vuust J, Jepsen S, Oeuvray C, Theisen M, , 2000. Conservation and heterogeneity of the glutamate-rich protein (GLURP) among field isolates and laboratory lines of Plasmodium falciparum. Mol Biochem Parasitol 111: 123130. [Google Scholar]
  42. Ndam NT, Basco LK, Ngane VF, Ayouba A, Ngolle EM, Deloron P, Peeters M, Tahar R, , 2017. Reemergence of chloroquine-sensitive pfcrt K76 Plasmodium falciparum genotype in southeastern Cameroon. Malar J 16: 130. [Google Scholar]
  43. Huang B, ., 2016. Prevalence of crt and mdr-1 mutations in Plasmodium falciparum isolates from Grande Comore island after withdrawal of chloroquine. Malar J 15: 414. [Google Scholar]
  44. Kublin JG, Cortese JF, Njunju EM, Mukadam RAG, Wirima JJ, Kazembe PN, Djimdé AA, Kouriba B, Taylor TE, Plowe CV, , 2003. Reemergence of chloroquine-sensitive Plasmodium falciparum malaria after cessation of chloroquine use in Malawi. J Infect Dis 187: 18701875. [Google Scholar]
  45. Zeeshan M, ., 2012. Genetic variation in the Plasmodium falciparum circumsporozoite protein in India and its relevance to RTS,S malaria vaccine. PLoS One 7: e43430. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.17-0621
Loading
/content/journals/10.4269/ajtmh.17-0621
Loading

Data & Media loading...

  • Received : 04 Aug 2017
  • Accepted : 14 Nov 2017
  • Published online : 22 Jan 2018

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error